Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hermite polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Kibble–Slepian formula === Let <math display="inline">M</math> be a real <math display="inline">n\times n</math> symmetric matrix, then the '''Kibble–Slepian formula''' states that<math display="block">\det(I+M)^{-\frac 12 } e^{x^T M (I+M)^{-1}x} = \sum_K \left[\prod_{1\leq i \leq j \leq n} \frac{(M_{ij}/2)^{k_{ij}}}{k_{ij}!}\right] 2^{-tr(K)} H_{k_1}(x_1) \cdots H_{k_n}(x_n)</math> where <math display="inline">\sum_K</math> is the <math>\frac{n(n+1)}{2}</math>-fold summation over all <math display="inline">n \times n</math> symmetric matrices with non-negative integer entries, <math>tr(K)</math> is the [[Trace (linear algebra)|trace]] of <math>K</math>, and <math display="inline">k_i</math> is defined as <math display="inline">k_{ii} + \sum_{j=1}^n k_{ij}</math>. This gives [[Mehler kernel|Mehler's formula]] when <math>M = \begin{bmatrix} 0 & u \\ u & 0\end{bmatrix}</math>. Equivalently stated, if <math display="inline">T</math> is a [[Positive semidefinite matrices|positive semidefinite matrix]], then set <math display="inline">M = -T(I+T)^{-1}</math>, we have <math display="inline">M(I+M)^{-1} = -T</math>, so <math display="block"> e^{-x^T T x} = \det(I+T)^{-\frac 12} \sum_K \left[\prod_{1\leq i \leq j \leq n} \frac{(M_{ij}/2)^{k_{ij}}}{k_{ij}!}\right] 2^{-tr(K)} H_{k_1}(x_1) \dots H_{k_n}(x_n) </math>Equivalently stated in a form closer to the [[boson]] [[quantum mechanics]] of the [[harmonic oscillator]]:<ref name=":0">{{Cite journal |last=Louck |first=J. D |date=1981-09-01 |title=Extension of the Kibble-Slepian formula for Hermite polynomials using boson operator methods |url=https://dx.doi.org/10.1016/0196-8858%2881%2990005-1 |journal=Advances in Applied Mathematics |volume=2 |issue=3 |pages=239–249 |doi=10.1016/0196-8858(81)90005-1 |issn=0196-8858}}</ref><math display="block"> \pi^{-n/4}\det(I+M)^{-\frac 12 }e^{- \frac 12 x^T(I-M)(I+M)^{-1} x}= \sum_K\left[\prod_{1 \leq i \leq j \leq n} M_{i j}^{k_{i j}} / k_{i j}!\right]\left[\prod_{1 \leq i \leq n} k_{i}!\right]^{1 / 2} 2^{-\operatorname{tr} K} \psi_{k_1}\left(x_1\right) \cdots \psi_{k_n}\left(x_n\right) . </math> where each <math display="inline">\psi_n(x)</math> is the <math display="inline">n</math>-th eigenfunction of the harmonic oscillator, defined as <math display="block">\psi_n(x) := \frac{1}{\sqrt{2^n n!}}\left(\frac{1}{\pi}\right)^{\frac{1}{4}} e^{-\frac{1}{2} x^2} H_n(x) </math>The Kibble–Slepian formula was proposed by Kibble in 1945<ref>{{Cite journal |last=Kibble |first=W. F. |date=June 1945 |title=An extension of a theorem of Mehler's on Hermite polynomials |url=https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/abs/an-extension-of-a-theorem-of-mehlers-on-hermite-polynomials/6CD265E3054D1595062F1CA83D492AC2 |journal=Mathematical Proceedings of the Cambridge Philosophical Society |language=en |volume=41 |issue=1 |pages=12–15 |doi=10.1017/S0305004100022313 |bibcode=1945PCPS...41...12K |issn=1469-8064}}</ref> and proven by Slepian in 1972 using Fourier analysis.<ref>{{Cite journal |last=Slepian |first=David |date=November 1972 |title=On the Symmetrized Kronecker Power of a Matrix and Extensions of Mehler's Formula for Hermite Polynomials |url=https://epubs.siam.org/doi/abs/10.1137/0503060 |journal=SIAM Journal on Mathematical Analysis |volume=3 |issue=4 |pages=606–616 |doi=10.1137/0503060 |issn=0036-1410}}</ref> Foata gave a combinatorial proof<ref>{{Cite journal |last=Foata |first=Dominique |date=1981-09-01 |title=Some Hermite polynomial identities and their combinatorics |url=https://dx.doi.org/10.1016/0196-8858%2881%2990006-3 |journal=Advances in Applied Mathematics |volume=2 |issue=3 |pages=250–259 |doi=10.1016/0196-8858(81)90006-3 |issn=0196-8858}}</ref> while Louck gave a proof via boson quantum mechanics.<ref name=":0" /> It has a generalization for complex-argument Hermite polynomials.<ref>{{Cite journal |last1=Ismail |first1=Mourad E.H. |last2=Zhang |first2=Ruiming |date=September 2016 |title=Kibble–Slepian formula and generating functions for 2D polynomials |url=https://doi.org/10.1016/j.aam.2016.05.003 |journal=Advances in Applied Mathematics |volume=80 |pages=70–92 |doi=10.1016/j.aam.2016.05.003 |issn=0196-8858|arxiv=1508.01816 }}</ref><ref>{{Cite journal |last1=Ismail |first1=Mourad E. H. |last2=Zhang |first2=Ruiming |date=2017-04-01 |title=A review of multivariate orthogonal polynomials |journal=Journal of the Egyptian Mathematical Society |volume=25 |issue=2 |pages=91–110 |doi=10.1016/j.joems.2016.11.001 |issn=1110-256X|doi-access=free }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)