Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hexadecimal
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Real numbers== === Rational numbers === As with other numeral systems, the hexadecimal system can be used to represent [[rational number]]s, although [[repeating decimal|repeating expansions]] are common since sixteen (10<sub>16</sub>) has only a single prime factor: two. For any base, 0.1 (or "1/10") is always equivalent to one divided by the representation of that base value in its own number system. Thus, whether dividing one by two for [[binary numeral system|binary]] or dividing one by sixteen for hexadecimal, both of these fractions are written as <code>0.1</code>. Because the radix 16 is a [[square number|perfect square]] (4<sup>2</sup>), fractions expressed in hexadecimal have an odd period much more often than decimal ones, and there are no [[cyclic number]]s (other than trivial single digits). Recurring digits are exhibited when the denominator in lowest terms has a [[prime factor]] not found in the radix; thus, when using hexadecimal notation, all fractions with denominators that are not a [[power of two]] result in an infinite string of recurring digits (such as thirds and fifths). This makes hexadecimal (and binary) less convenient than [[decimal]] for representing rational numbers since a larger proportion lies outside its range of finite representation. All rational numbers finitely representable in hexadecimal are also finitely representable in decimal, [[duodecimal]] and [[sexagesimal]]: that is, any hexadecimal number with a finite number of digits also has a finite number of digits when expressed in those other bases. Conversely, only a fraction of those finitely representable in the latter bases are finitely representable in hexadecimal. For example, decimal 0.1 corresponds to the infinite recurring representation 0.1{{overline|9}} in hexadecimal. However, hexadecimal is more efficient than duodecimal and sexagesimal for representing fractions with powers of two in the denominator. For example, 0.0625<sub>10</sub> (one-sixteenth) is equivalent to 0.1<sub>16</sub>, 0.09<sub>12</sub>, and 0;3,45<sub>60</sub>. {|class="wikitable" ! rowspan=2 style="vertical-align:bottom;" | n ! colspan="3" | Decimal<br />Prime factors of: base, b = 10: {{color|#920000|2}}, {{color|#920000|5}};<br />b − 1 = 9: {{color|#000092|3}};<br />b + 1 = 11: {{color|#004900|11}} ! colspan="3" | Hexadecimal<br />Prime factors of: base, b = 16{{sub|10}} = 10: {{color|#920000|2}}; b − 1 = 15{{sub|10}} = F: {{color|#000092|3, 5}}; b + 1 = 17{{sub|10}} = 11: {{color|#004900|11}} |- ! Reciprocal ! Prime factors ! Positional representation<br />(decimal) ! Positional representation<br />(hexadecimal) ! Prime factors ! Reciprocal |- | 2 | align="center" | 1/2 | align="center" | {{color|#920000|'''2'''}} | '''0.5''' | '''0.8''' | align="center" | {{color|#920000|'''2'''}} | align="center" | 1/2 |- | 3 | align="center" | 1/3 | align="center" | {{color|#000092|'''3'''}} | bgcolor=#e4e4e4 | '''0.'''3333... = '''0.'''{{overline|3}} | bgcolor="#e4e4e4" | '''0.'''5555... = '''0.'''{{overline|5}} | align="center" | {{color|#000092|'''3'''}} | align="center" | 1/3 |- | 4 | align="center" | 1/4 | align="center" | {{color|#920000|'''2'''}} | '''0.25''' | '''0.4''' | align="center" | {{color|#920000|'''2'''}} | align="center" | 1/4 |- | 5 | align="center" | 1/5 | align="center" | {{color|#920000|'''5'''}} | '''0.2''' | bgcolor="#e4e4e4" | '''0.'''{{overline|3}} | align="center" | {{color|#000092|'''5'''}} | align="center" | 1/5 |- | 6 | align="center" | 1/6 | align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}} | bgcolor=#e4e4e4 | '''0.1'''{{overline|6}} | bgcolor="#e4e4e4" | '''0.2'''{{overline|A}} | align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}} | align="center" | 1/6 |- | 7 | align="center" | 1/7 | align="center" | '''7''' | bgcolor=#e4e4e4 | '''0.'''{{overline|142857}} | bgcolor="#e4e4e4" | '''0.'''{{overline|249}} | align="center" | '''7''' | align="center" | 1/7 |- | 8 | align="center" | 1/8 | align="center" | {{color|#920000|'''2'''}} | '''0.125''' | '''0.2''' | align="center" | {{color|#920000|'''2'''}} | align="center" | 1/8 |- | 9 | align="center" | 1/9 | align="center" | {{color|#000092|'''3'''}} | bgcolor=#e4e4e4 | '''0.'''{{overline|1}} | bgcolor="#e4e4e4" | '''0.'''{{overline|1C7}} | align="center" | {{color|#000092|'''3'''}} | align="center" | 1/9 |- | 10 | align="center" | 1/10 | align="center" | {{color|#920000|'''2'''}}, {{color|#920000|'''5'''}} | '''0.1''' | bgcolor="#e4e4e4" | '''0.1'''{{overline|9}} | align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''5'''}} | align="center" | 1/A |- | 11 | align="center" | 1/11 | align="center" | {{color|#004900|'''11'''}} | bgcolor=#e4e4e4 | '''0.'''{{overline|09}} | bgcolor="#e4e4e4" | '''0.'''{{overline|1745D}} | align="center" | '''B''' | align="center" | 1/B |- | 12 | align="center" | 1/12 | align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}} | bgcolor=#e4e4e4 | '''0.08'''{{overline|3}} | bgcolor="#e4e4e4" | '''0.1'''{{overline|5}} | align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}} | align="center" | 1/C |- | 13 | align="center" | 1/13 | align="center" | '''13''' | bgcolor=#e4e4e4 | '''0.'''{{overline|076923}} | bgcolor="#e4e4e4" | '''0.'''{{overline|13B}} | align="center" | '''D''' | align="center" | 1/D |- | 14 | align="center" | 1/14 | align="center" | {{color|#920000|'''2'''}}, '''7''' | bgcolor=#e4e4e4 | '''0.0'''{{overline|714285}} | bgcolor="#e4e4e4" | '''0.1'''{{overline|249}} | align="center" | {{color|#920000|'''2'''}}, '''7''' | align="center" | 1/E |- | 15 | align="center" | 1/15 | align="center" | {{color|#000092|'''3'''}}, {{color|#920000|'''5'''}} | bgcolor=#e4e4e4 | '''0.0'''{{overline|6}} | bgcolor="#e4e4e4" | '''0.'''{{overline|1}} | align="center" | {{color|#000092|'''3'''}}, {{color|#000092|'''5'''}} | align="center" | 1/F |- | 16 | align="center" | 1/16 | align="center" | {{color|#920000|'''2'''}} | '''0.0625''' | '''0.1''' | align="center" | {{color|#920000|'''2'''}} | align="center" | 1/10 |- | 17 | align="center" | 1/17 | align="center" | '''17''' | bgcolor=#e4e4e4 | '''0.'''{{overline|0588235294117647}} | bgcolor="#e4e4e4" | '''0.'''{{overline|0F}} | align="center" | {{color|#004900|'''11'''}} | align="center" | 1/11 |- | 18 | align="center" | 1/18 | align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}} | bgcolor=#e4e4e4 | '''0.0'''{{overline|5}} | bgcolor="#e4e4e4" | '''0.0'''{{overline|E38}} | align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}} | align="center" | 1/12 |- | 19 | align="center" | 1/19 | align="center" | '''19''' | bgcolor=#e4e4e4 | '''0.'''{{overline|052631578947368421}} | bgcolor="#e4e4e4" | '''0.'''{{overline|0D79435E5}} | align="center" | '''13''' | align="center" | 1/13 |- | 20 | align="center" | 1/20 | align="center" | {{color|#920000|'''2'''}}, {{color|#920000|'''5'''}} | '''0.05''' | bgcolor="#e4e4e4" | '''0.0'''{{overline|C}} | align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''5'''}} | align="center" | 1/14 |- | 21 | align="center" | 1/21 | align="center" | {{color|#000092|'''3'''}}, '''7''' | bgcolor=#e4e4e4 | '''0.'''{{overline|047619}} | bgcolor="#e4e4e4" | '''0.'''{{overline|0C3}} | align="center" | {{color|#000092|'''3'''}}, '''7''' | align="center" | 1/15 |- | 22 | align="center" | 1/22 | align="center" | {{color|#920000|'''2'''}}, {{color|#004900|'''11'''}} | bgcolor=#e4e4e4 | '''0.0'''{{overline|45}} | bgcolor="#e4e4e4" | '''0.0'''{{overline|BA2E8}} | align="center" | {{color|#920000|'''2'''}}, '''B''' | align="center" | 1/16 |- | 23 | align="center" | 1/23 | align="center" | '''23''' | bgcolor=#e4e4e4 | '''0.'''{{overline|0434782608695652173913}} | bgcolor="#e4e4e4" | '''0.'''{{overline|0B21642C859}} | align="center" | '''17''' | align="center" | 1/17 |- | 24 | align="center" | 1/24 | align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}} | bgcolor=#e4e4e4 | '''0.041'''{{overline|6}} | bgcolor="#e4e4e4" | '''0.0'''{{overline|A}} | align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}} | align="center" | 1/18 |- | 25 | align="center" | 1/25 | align="center" | {{color|#920000|'''5'''}} | '''0.04''' | bgcolor="#e4e4e4" | '''0.'''{{overline|0A3D7}} | align="center" | {{color|#000092|'''5'''}} | align="center" | 1/19 |- | 26 | align="center" | 1/26 | align="center" | {{color|#920000|'''2'''}}, '''13''' | bgcolor=#e4e4e4 | '''0.0'''{{overline|384615}} | bgcolor="#e4e4e4" | '''0.0'''{{overline|9D8}} | align="center" | {{color|#920000|'''2'''}}, '''D''' | align="center" | 1/1A |- | 27 | align="center" | 1/27 | align="center" | {{color|#000092|'''3'''}} | bgcolor=#e4e4e4 | '''0.'''{{overline|037}} | bgcolor="#e4e4e4" | '''0.'''{{overline|097B425ED}} | align="center" | {{color|#000092|'''3'''}} | align="center" | 1/1B |- | 28 | align="center" | 1/28 | align="center" | {{color|#920000|'''2'''}}, '''7''' | bgcolor=#e4e4e4 | '''0.03'''{{overline|571428}} | bgcolor="#e4e4e4" | '''0.0'''{{overline|924}} | align="center" | {{color|#920000|'''2'''}}, '''7''' | align="center" | 1/1C |- | 29 | align="center" | 1/29 | align="center" | '''29''' | bgcolor=#e4e4e4 | '''0.'''{{overline|0344827586206896551724137931}} | bgcolor="#e4e4e4" | '''0.'''{{overline|08D3DCB}} | align="center" | '''1D''' | align="center" | 1/1D |- | 30 | align="center" | 1/30 | align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}}, {{color|#920000|'''5'''}} | bgcolor=#e4e4e4 | '''0.0'''{{overline|3}} | bgcolor="#e4e4e4" | '''0.0'''{{overline|8}} | align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}}, {{color|#000092|'''5'''}} | align="center" | 1/1E |- | 31 | align="center" | 1/31 | align="center" | '''31''' | bgcolor=#e4e4e4 | '''0.'''{{overline|032258064516129}} | bgcolor="#e4e4e4" | '''0.'''{{overline|08421}} | align="center" | '''1F''' | align="center" | 1/1F |- | 32 | align="center" | 1/32 | align="center" | {{color|#920000|'''2'''}} | '''0.03125''' | '''0.08''' | align="center" | {{color|#920000|'''2'''}} | align="center" | 1/20 |- | 33 | align="center" | 1/33 | align="center" | {{color|#000092|'''3'''}}, {{color|#004900|'''11'''}} | bgcolor=#e4e4e4 | '''0.'''{{overline|03}} | bgcolor="#e4e4e4" | '''0.'''{{overline|07C1F}} | align="center" | {{color|#000092|'''3'''}}, '''B''' | align="center" | 1/21 |- | 34 | align="center" | 1/34 | align="center" | {{color|#920000|'''2'''}}, '''17''' | bgcolor=#e4e4e4 | '''0.0'''{{overline|2941176470588235}} | bgcolor="#e4e4e4" | '''0.0'''{{overline|78}} | align="center" | {{color|#920000|'''2'''}}, {{color|#004900|'''11'''}} | align="center" | 1/22 |- | 35 | align="center" | 1/35 | align="center" | {{color|#920000|'''5'''}}, '''7''' | bgcolor=#e4e4e4 | '''0.0'''{{overline|285714}} | bgcolor="#e4e4e4" | '''0.'''{{overline|075}} | align="center" | {{color|#000092|'''5'''}}, '''7''' | align="center" | 1/23 |- | 36 | align="center" | 1/36 | align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}} | bgcolor=#e4e4e4 | '''0.02'''{{overline|7}} | bgcolor="#e4e4e4" | '''0.0'''{{overline|71C}} | align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}} | align="center" | 1/24 |- | 37 | align="center" | 1/37 | align="center" | '''37''' | bgcolor=#e4e4e4 | '''0.'''{{overline|027}} | bgcolor="#e4e4e4" | '''0.'''{{overline|06EB3E453}} | align="center" | '''25''' | align="center" | 1/25 |- | 38 | align="center" | 1/38 | align="center" | {{color|#920000|'''2'''}}, '''19''' | bgcolor=#e4e4e4 | '''0.0'''{{overline|2631578947368421}} | bgcolor="#e4e4e4" | '''0.0'''{{overline|435E50D79435E4AC62B4}} | align="center" | {{color|#920000|'''2'''}}, '''13''' | align="center" | 1/26 |- | 39 | align="center" | 1/39 | align="center" | {{color|#000092|'''3'''}}, '''13''' | bgcolor=#e4e4e4 | '''0.0'''{{overline|256410}} | bgcolor="#e4e4e4" | '''0.0'''{{overline|69}} | align="center" | {{color|#000092|'''3'''}}, '''D''' | align="center" | 1/27 |- | 40 | align="center" | 1/40 | align="center" | {{color|#920000|'''2'''}}, {{color|#920000|'''5'''}} | '''0.025''' | bgcolor="#e4e4e4" | '''0.0'''{{overline|6}} | align="center" | {{color|#000092|'''2'''}}, {{color|#000092|'''5'''}} | align="center" | 1/28 |- | 41 | align="center" | 1/41 | align="center" | '''41''' | bgcolor=#e4e4e4 | '''0.0'''{{overline|2439}} | bgcolor="#e4e4e4" | '''0.0'''{{overline|63E9538D283B5B62FB8}} | align="center" | '''29''' | align="center" | 1/29 |- | 42 | align="center" | 1/42 | align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}}, '''7''' | bgcolor=#e4e4e4 | '''0.0'''{{overline|238095}} | bgcolor="#e4e4e4" | '''0.0'''{{overline|618}} | align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}}, '''7''' | align="center" | 1/2A |- | 43 | align="center" | 1/43 | align="center" | '''43''' | bgcolor=#e4e4e4 | '''0.0'''{{overline|23255813953488372093}} | bgcolor="#e4e4e4" | '''0.0'''{{overline|5F417D}} | align="center" | '''2B''' | align="center" | 1/2B |- | 44 | align="center" | 1/44 | align="center" | {{color|#920000|'''2'''}}, {{color|#004900|'''11'''}} | bgcolor=#e4e4e4 | '''0.02'''{{overline|27}} | bgcolor="#e4e4e4" | '''0.05'''{{overline|D1745}} | align="center" | {{color|#920000|'''2'''}}, '''B''' | align="center" | 1/2C |- | 45 | align="center" | 1/45 | align="center" | {{color|#000092|'''3'''}}, {{color|#920000|'''5'''}} | bgcolor=#e4e4e4 | '''0.0'''{{overline|2}} | bgcolor="#e4e4e4" | '''0.0'''{{overline|5B}} | align="center" | {{color|#000092|'''3'''}}, '''5''' | align="center" | 1/2D |- | 46 | align="center" | 1/46 | align="center" | {{color|#920000|'''2'''}}, '''23''' | bgcolor=#e4e4e4 | '''0.0'''{{overline|2173913043478765869567}} | bgcolor="#e4e4e4" | '''0.0'''{{overline|590B21642C9C4EF44A9}} | align="center" | {{color|#920000|'''2'''}}, '''17''' | align="center" | 1/2E |- | 47 | align="center" | 1/47 | align="center" | '''47''' | bgcolor=#e4e4e4 | '''0.0'''{{overline|212765957446808510638297872340425531914893617}} | bgcolor="#e4e4e4" | '''0.0'''{{overline|572620AE4C415C9882B931}} | align="center" | '''2F''' | align="center" | 1/2F |- | 48 | align="center" | 1/48 | align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}} | bgcolor=#e4e4e4 | '''0.0208'''{{overline|3}} | bgcolor="#e4e4e4" | '''0.0'''{{overline|5}} | align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}} | align="center" | 1/30 |} ===Irrational numbers=== The table below gives the expansions of some common [[irrational number]]s in decimal and hexadecimal. {| class="wikitable" ! rowspan=2 | Number ! colspan=2 | Positional representation |- ! Decimal ! Hexadecimal |- | [[Square root of 2|{{sqrt|2}}]] (the length of the [[diagonal]] of a unit [[Square (geometry)|square]]) | {{val|1.414213562373095048}}... | 1.6A09E667F3BCD... |- | [[Square root of 3|{{sqrt|3}}]] (the length of the diagonal of a unit [[cube]]) | {{val|1.732050807568877293}}... | 1.BB67AE8584CAA... |- | [[Square root of 5|{{sqrt|5}}]] (the length of the [[diagonal]] of a 1×2 [[rectangle]]) | {{val|2.236067977499789696}}... | 2.3C6EF372FE95... |- | {{mvar|[[Golden ratio|φ]]}} (phi, the [[golden ratio]] = {{math|(1+{{radical|5}})/2}}) | {{val|1.618033988749894848}}... | 1.9E3779B97F4A... |- | {{mvar|[[Pi|π]]}} (pi, the ratio of [[circumference]] to [[diameter]] of a circle) | {{val|3.141592653589793238462643}}<br />{{val|383279502884197169399375105}}... | 3.243F6A8885A308D313198A2E0<br />3707344A4093822299F31D008... |- | {{mvar|[[E (mathematical constant)|e]]}} (the base of the [[natural logarithm]]) | {{val|2.718281828459045235}}... | 2.B7E151628AED2A6B... |- | {{mvar|[[Thue–Morse constant|τ]]}} (the [[Thue–Morse constant]]) | {{val|0.412454033640107597}}... | 0.6996 9669 9669 6996... |- | {{mvar|[[Euler-Mascheroni constant|γ]]}} (the limiting difference between the [[harmonic series (mathematics)|harmonic series]] and the natural logarithm) | {{val|0.577215664901532860}}... | 0.93C467E37DB0C7A4D1B... |} ===Powers=== Powers of two have very simple expansions in hexadecimal. The first sixteen powers of two are shown below. {| class="wikitable" ! 2<sup>''x''</sup> !! Value !! Value (Decimal) |- | 2<sup>0</sup> || style="text-align:right;" | 1 || style="text-align:right;" | 1 |- | 2<sup>1</sup> || style="text-align:right;" | 2 || style="text-align:right;" | 2 |- | 2<sup>2</sup> || style="text-align:right;" | 4 || style="text-align:right;" | 4 |- | 2<sup>3</sup> || style="text-align:right;" | 8 || style="text-align:right;" | 8 |- | 2<sup>4</sup> || style="text-align:right;" | 10<sub>hex</sub> || style="text-align:right;" | 16<sub>dec</sub> |- | 2<sup>5</sup> || style="text-align:right;" | 20<sub>hex</sub> || style="text-align:right;" | 32<sub>dec</sub> |- | 2<sup>6</sup> || style="text-align:right;" | 40<sub>hex</sub> || style="text-align:right;" | 64<sub>dec</sub> |- | 2<sup>7</sup> || style="text-align:right;" | 80<sub>hex</sub> || style="text-align:right;" | 128<sub>dec</sub> |- | 2<sup>8</sup> || style="text-align:right;" | 100<sub>hex</sub> || style="text-align:right;" | 256<sub>dec</sub> |- | 2<sup>9</sup> || style="text-align:right;" | 200<sub>hex</sub> || style="text-align:right;" | 512<sub>dec</sub> |- | 2<sup>A</sup> (2{{sup|10{{sub|dec}}}}) || style="text-align:right;" | 400<sub>hex</sub> || style="text-align:right;" | 1,024<sub>dec</sub> |- | 2<sup>B</sup> (2{{sup|11{{sub|dec}}}}) || style="text-align:right;" | 800<sub>hex</sub> || style="text-align:right;" | 2,048<sub>dec</sub> |- | 2<sup>C</sup> (2{{sup|12{{sub|dec}}}}) || style="text-align:right;" | 1,000<sub>hex</sub> || style="text-align:right;" | 4,096<sub>dec</sub> |- | 2<sup>D</sup> (2{{sup|13{{sub|dec}}}}) || style="text-align:right;" | 2,000<sub>hex</sub> || style="text-align:right;" | 8,192<sub>dec</sub> |- | 2<sup>E</sup> (2{{sup|14{{sub|dec}}}}) || style="text-align:right;" | 4,000<sub>hex</sub> || style="text-align:right;" | 16,384<sub>dec</sub> |- | 2<sup>F</sup> (2{{sup|15{{sub|dec}}}}) || style="text-align:right;" | 8,000<sub>hex</sub> || style="text-align:right;" | 32,768<sub>dec</sub> |- | 2<sup>10</sup> (2{{sup|16{{sub|dec}}}}) || style="text-align:right;" | 10,000<sub>hex</sub> || style="text-align:right;" | 65,536<sub>dec</sub> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)