Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hypergeometric distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Application to Texas hold'em poker === In [[hold'em]] poker players make the best hand they can combining the two cards in their hand with the 5 cards (community cards) eventually turned up on the table. The deck has 52 and there are 13 of each suit. For this example assume a player has 2 clubs in the hand and there are 3 cards showing on the table, 2 of which are also clubs. The player would like to know the probability of one of the next 2 cards to be shown being a club to complete the [[Flush (poker)|flush]].<br /> (Note that the probability calculated in this example assumes no information is known about the cards in the other players' hands; however, experienced poker players may consider how the other players place their bets (check, call, raise, or fold) in considering the probability for each scenario. Strictly speaking, the approach to calculating success probabilities outlined here is accurate in a scenario where there is just one player at the table; in a multiplayer game this probability might be adjusted somewhat based on the betting play of the opponents.) There are 4 clubs showing so there are 9 clubs still unseen. There are 5 cards showing (2 in the hand and 3 on the table) so there are <math>52-5=47</math> still unseen. The probability that one of the next two cards turned is a club can be calculated using hypergeometric with <math>k=1, n=2, K=9</math> and <math>N=47</math>. (about 31.64%) The probability that both of the next two cards turned are clubs can be calculated using hypergeometric with <math>k=2, n=2, K=9</math> and <math>N=47</math>. (about 3.33%) The probability that neither of the next two cards turned are clubs can be calculated using hypergeometric with <math>k=0, n=2, K=9</math> and <math>N=47</math>. (about 65.03%)
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)