Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hypernucleus
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Similar species == ===Kaonic nuclei=== The K<sup>–</sup> meson can orbit a nucleus in an exotic atom, such as in [[kaonic hydrogen]].<ref>{{cite journal |last1=Iwasaki |first1=M. |last2=Hayano |first2=R. S. |last3=Ito |first3=T. M. |last4=Nakamura |first4=S. N. |last5=Terada |first5=T. P. |last6=Gill |first6=D. R. |last7=Lee |first7=L. |last8=Olin |first8=A. |last9=Salomon |first9=M. |last10=Yen |first10=S. |last11=Bartlett |first11=K. |last12=Beer |first12=G. A. |last13=Mason |first13=G. |last14=Trayling |first14=G. |last15=Outa |first15=H. |last16=Taniguchi |first16=T. |last17=Yamashita |first17=Y. |last18=Seki |first18=R. |title=Observation of Kaonic Hydrogen K α X Rays |journal=Physical Review Letters |date=21 April 1997 |volume=78 |issue=16 |pages=3067–3069 |doi=10.1103/PhysRevLett.78.3067|bibcode=1997PhRvL..78.3067I }}</ref> Although the K<sup>–</sup>-proton strong interaction in kaonic hydrogen is repulsive,<ref>{{cite journal |last1=Bazzi |first1=M. |last2=Beer |first2=G. |last3=Bombelli |first3=L. |last4=Bragadireanu |first4=A.M. |last5=Cargnelli |first5=M. |last6=Corradi |first6=G. |last7=Curceanu (Petrascu) |first7=C. |last8=dʼUffizi |first8=A. |last9=Fiorini |first9=C. |last10=Frizzi |first10=T. |last11=Ghio |first11=F. |last12=Girolami |first12=B. |last13=Guaraldo |first13=C. |last14=Hayano |first14=R.S. |last15=Iliescu |first15=M. |last16=Ishiwatari |first16=T. |last17=Iwasaki |first17=M. |last18=Kienle |first18=P. |last19=Levi Sandri |first19=P. |last20=Longoni |first20=A. |last21=Lucherini |first21=V. |last22=Marton |first22=J. |last23=Okada |first23=S. |last24=Pietreanu |first24=D. |last25=Ponta |first25=T. |last26=Rizzo |first26=A. |last27=Romero Vidal |first27=A. |last28=Scordo |first28=A. |last29=Shi |first29=H. |last30=Sirghi |first30=D.L. |last31=Sirghi |first31=F. |last32=Tatsuno |first32=H. |last33=Tudorache |first33=A. |last34=Tudorache |first34=V. |last35=Vazquez Doce |first35=O. |last36=Widmann |first36=E. |last37=Zmeskal |first37=J. |title=A new measurement of kaonic hydrogen X-rays |journal=Physics Letters B |date=October 2011 |volume=704 |issue=3 |pages=113–117 |doi=10.1016/j.physletb.2011.09.011|arxiv=1105.3090|bibcode=2011PhLB..704..113S |s2cid=118473154 }}</ref> the K<sup>–</sup>–nucleus interaction is attractive for larger systems, so this meson can enter a strongly bound state closely related to a hypernucleus;<ref name="Feliciello"/> in particular, the K<sup>–</sup>–proton–proton system is experimentally known and more tightly bound than a normal nucleus.<ref>{{cite journal |last1=Sakuma |first1=F. |last2=Ajimura |first2=S. |last3=Akaishi |first3=T. |last4=Asano |first4=H. |last5=Bazzi |first5=M. |last6=Beer |first6=G. |last7=Bhang |first7=H. |last8=Bragadireanu |first8=M. |last9=Buehler |first9=P. |last10=Busso |first10=L. |last11=Cargnelli |first11=M. |last12=Choi |first12=S. |last13=Clozza |first13=A. |last14=Curceanu |first14=C. |last15=Enomoto |first15=S. |last16=Fujioka |first16=H. |last17=Fujiwara |first17=Y. |last18=Fukuda |first18=T. |last19=Guaraldo |first19=C. |last20=Hashimoto |first20=T. |last21=Hayano |first21=R. S. |last22=Hiraiwa |first22=T. |last23=Iio |first23=M. |last24=Iliescu |first24=M. |last25=Inoue |first25=K. |last26=Ishiguro |first26=Y. |last27=Ishikawa |first27=T. |last28=Ishimoto |first28=S. |last29=Itahashi |first29=K. |last30=Iwasaki |first30=M. |last31=Iwai |first31=M. |last32=Kanno |first32=K. |last33=Kato |first33=K. |last34=Kato |first34=Y. |last35=Kawasaki |first35=S. |last36=Kienle |first36=P. |last37=Kou |first37=H. |last38=Ma |first38=Y. |last39=Marton |first39=J. |last40=Matsuda |first40=Y. |last41=Miliucci |first41=M. |last42=Mizoi |first42=Y. |last43=Morra |first43=O. |last44=Murayama |first44=R. |last45=Nagae |first45=T. |last46=Noumi |first46=H. |last47=Ohnishi |first47=H. |last48=Okada |first48=S. |last49=Outa |first49=H. |last50=Ozawa |first50=K. |last51=Piscicchia |first51=K. |last52=Sada |first52=Y. |last53=Sakaguchi |first53=A. |last54=Sato |first54=M. |last55=Scordo |first55=A. |last56=Sekimoto |first56=M. |last57=Shi |first57=H. |last58=Shirotori |first58=K. |last59=Simon |first59=M. |last60=Sirghi |first60=D. |last61=Sirghi |first61=F. |last62=Suzuki |first62=S. |last63=Suzuki |first63=T. |last64=Tanida |first64=K. |last65=Tatsuno |first65=H. |last66=Tokuda |first66=M. |last67=Tomono |first67=D. |last68=Toyoda |first68=A. |last69=Tsukada |first69=K. |last70=Doce |first70=O. Vázquez |last71=Widmann |first71=E. |last72=Yamaga |first72=T. |last73=Yamazaki |first73=T. |last74=Yoshida |first74=C. |last75=Zhang |first75=Q. |last76=Zmeskal |first76=J.|display-authors= 1 |title=Recent Results and Future Prospects of Kaonic Nuclei at J-PARC |journal=Few-Body Systems |date=December 2021 |volume=62 |issue=4 |pages=103 |doi=10.1007/s00601-021-01692-3|arxiv=2110.03150 |bibcode=2021FBS....62..103S |s2cid=238419423 }}</ref> ===Charmed hypernuclei=== Nuclei containing a [[charm quark]] have been predicted theoretically since 1977,<ref>{{cite journal |last1=Dover |first1=C. B. |last2=Kahana |first2=S. H. |title=Possibility of Charmed Hypernuclei |journal=Physical Review Letters |date=12 December 1977 |volume=39 |issue=24 |pages=1506–1509 |doi=10.1103/PhysRevLett.39.1506|bibcode=1977PhRvL..39.1506D }}</ref> and are described as '''charmed hypernuclei''' despite the possible absence of strange quarks.<ref name="Gastão">{{cite book |last1=Krein |first1=Gastão |title=Central European Symposium on Thermophysics 2019 (Cest) |chapter=Charmed hypernuclei and nuclear-bound charmonia |date=2019 |volume=2133 |pages=020022 |doi=10.1063/1.5118390|s2cid=201510645 }}</ref> In particular, the lightest charmed baryons, the Λ<sub>c</sub> and Σ<sub>c</sub> baryons,{{efn|name=csub|The subscript ''c'' in the symbols for charmed baryons indicate that a strange quark in a hyperon is replaced with a charm quark; the superscript, if present, still represents the total charge of the baryon.}} are predicted to exist in bound states in charmed hypernuclei, and could be created in processes analogous to those used to make hypernuclei.<ref name="Gastão"/> The depth of the Λ<sub>c</sub> potential in nuclear matter is predicted to be 58 MeV,<ref name="Gastão"/> but unlike Λ hypernuclei, larger hypernuclei containing the positively charged Λ<sub>c</sub> would be less stable than the corresponding Λ hypernuclei due to [[Coulomb repulsion]].<ref>{{cite journal |last1=Güven |first1=H. |last2=Bozkurt |first2=K. |last3=Khan |first3=E. |last4=Margueron |first4=J. |title=Ground state properties of charmed hypernuclei within a mean field approach |journal=Physical Review C |date=10 December 2021 |volume=104 |issue=6 |pages=064306 |doi=10.1103/PhysRevC.104.064306|arxiv=2106.04491 |bibcode=2021PhRvC.104f4306G |s2cid=235368356 }}</ref> The mass difference between the Λ<sub>c</sub> and the {{physics particle|Σ|TR=+|BR=c}} is too large for appreciable mixing of these baryons to occur in hypernuclei.<ref>{{cite journal |last1=Vidaña |first1=I. |last2=Ramos |first2=A. |last3=Jiménez-Tejero |first3=C. E. |title=Charmed nuclei within a microscopic many-body approach |journal=Physical Review C |date=23 April 2019 |volume=99 |issue=4 |pages=045208 |doi=10.1103/PhysRevC.99.045208|arxiv=1901.09644 |bibcode=2019PhRvC..99d5208V |s2cid=119100085 }}</ref> Weak decays of charmed hypernuclei have strong [[special relativity|relativistic]] corrections compared to those in ordinary hypernuclei, as the energy released in the decay process is comparable to the mass of the Λ baryon.<ref>{{cite journal |last1=Fontoura |first1=C E |last2=Krmpotić |first2=F |last3=Galeão |first3=A P |last4=Conti |first4=C De |last5=Krein |first5=G |title=Nonmesonic weak decay of charmed hypernuclei |journal=Journal of Physics G: Nuclear and Particle Physics |date=1 January 2018 |volume=45 |issue=1 |pages=015101 |doi=10.1088/1361-6471/aa982a|arxiv=1711.04579 |bibcode=2018JPhG...45a5101F |s2cid=119184293 }}</ref> === Antihypernuclei === In August 2024 the [[STAR collaboration|STAR Collaboration]] reported the observation of the heaviest [[antimatter]] nucleus known, antihyperhydrogen-4 <math>{}_{\bar{{\boldsymbol{\Lambda }}}}{}^{{\bf{4}}}\bar{{\bf{H}}}</math> consisting of one [[antiproton]], two [[Antineutron|antineutrons]] and an [[antihyperon]].<ref>{{Cite journal |last1=Abdulhamid |first1=M. I. |last2=Aboona |first2=B. E. |last3=Adam |first3=J. |last4=Adamczyk |first4=L. |last5=Adams |first5=J. R. |last6=Aggarwal |first6=I. |last7=Aggarwal |first7=M. M. |last8=Ahammed |first8=Z. |last9=Aschenauer |first9=E. C. |last10=Aslam |first10=S. |last11=Atchison |first11=J. |last12=Bairathi |first12=V. |last13=Cap |first13=J. G. Ball |last14=Barish |first14=K. |last15=Bellwied |first15=R. |date=2024-08-21 |title=Observation of the antimatter hypernucleus $${}_{\bar{{\boldsymbol{\Lambda }}<nowiki>}}{}^</nowiki>{{\bf{4}}}\bar{{\bf{H}}}$$ |url=https://www.nature.com/articles/s41586-024-07823-0 |journal=Nature |volume=632 |issue=8027 |language=en |pages=1026–1031 |doi=10.1038/s41586-024-07823-0 |pmid=39169195 |issn=1476-4687}}</ref><ref>{{Cite web |author1=Ben Turner |date=2024-08-21 |title=Heaviest antimatter particle ever discovered could hold secrets to our universe's origins |url=https://www.livescience.com/physics-mathematics/particle-physics/scientists-discover-the-heaviest-antimatter-particle-ever-and-it-could-hold-secrets-to-our-universes-origins |access-date=2024-08-26 |website=livescience.com |language=en}}</ref><ref>{{Cite web |last=Egede |first=Ulrik |date=2024-08-21 |title=Heaviest antimatter observation yet will fine-tune numbers for dark matter search |url=https://theconversation.com/heaviest-antimatter-observation-yet-will-fine-tune-numbers-for-dark-matter-search-237127 |access-date=2024-08-26 |website=The Conversation |language=en-US}}</ref> The anti-lambda hyperon <math>\bar{\Lambda }</math><ref>{{Cite journal |last1=Prowse |first1=D. J. |last2=Baldo-Ceolin |first2=M. |date=1958-09-01 |title=Anti-Lambda Hyperon |url=https://link.aps.org/doi/10.1103/PhysRevLett.1.179 |journal=Physical Review Letters |language=en |volume=1 |issue=5 |pages=179–180 |doi=10.1103/PhysRevLett.1.179 |bibcode=1958PhRvL...1..179P |issn=0031-9007|url-access=subscription }}</ref> and the antihypertriton <math>{}_{\bar{\Lambda }}{}^{3}\bar{{\rm{H}}}</math><ref>{{Cite journal |last1=The STAR Collaboration |last2=Abelev |first2=B. I. |last3=Aggarwal |first3=M. M. |last4=Ahammed |first4=Z. |last5=Alakhverdyants |first5=A. V. |last6=Alekseev |first6=I. |last7=Anderson |first7=B. D. |last8=Arkhipkin |first8=D. |last9=Averichev |first9=G. S. |last10=Balewski |first10=J. |last11=Barnby |first11=L. S. |last12=Baumgart |first12=S. |last13=Beavis |first13=D. R. |last14=Bellwied |first14=R. |last15=Betancourt |first15=M. J. |date=2010-04-02 |title=Observation of an Antimatter Hypernucleus |url=https://www.science.org/doi/10.1126/science.1183980 |journal=Science |language=en |volume=328 |issue=5974 |pages=58–62 |doi=10.1126/science.1183980 |pmid=20203011 |issn=0036-8075|arxiv=1003.2030 |bibcode=2010Sci...328...58. }}</ref> have also been previously observed.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)