Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Incidence structure
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Levi graph examples ==== The Levi graph of the [[Fano plane]] is the [[Heawood graph]]. Since the Heawood graph is [[Connected graph|connected]] and [[vertex-transitive]], there exists an [[automorphism]] (such as the one defined by a reflection about the vertical axis in the figure of the Heawood graph) interchanging black and white vertices. This, in turn, implies that the Fano plane is self-dual. The specific representation, on the left, of the Levi graph of the Möbius–Kantor configuration (example 4 above) illustrates that a rotation of {{math|{{pi}}/4}} about the center (either clockwise or counterclockwise) of the diagram interchanges the blue and red vertices and maps edges to edges. That is to say that there exists a color interchanging automorphism of this graph. Consequently, the incidence structure known as the Möbius–Kantor configuration is self-dual.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)