Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Integer partition
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== References == * {{cite book|title=[[Abramowitz and Stegun|Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables]]|first1=Milton|last1=Abramowitz|author1-link=Milton Abramowitz|first2=Irene|last2=Stegun|author2-link=Irene Stegun|publisher=United States Department of Commerce, National Bureau of Standards|isbn=0-486-61272-4|date=1964}} * {{cite book|first=George E.|last=Andrews|author-link=George E. Andrews|title=The Theory of Partitions|date=1976|publisher=Cambridge University Press|isbn=0-521-63766-X}} * {{cite book |first1=George E.|last1=Andrews|first2=Kimmo|last2=Eriksson |title=Integer Partitions |publisher=Cambridge University Press |year=2004 |isbn=0-521-60090-1}} * {{cite book | last=Apostol | first=Tom M. | author-link=Tom M. Apostol | title=Modular functions and Dirichlet series in number theory | edition=2nd | series=[[Graduate Texts in Mathematics]] | volume=41 | location=New York etc. | publisher=[[Springer-Verlag]] | year=1990 | orig-year=1976 | isbn=0-387-97127-0 | zbl=0697.10023 | url-access=registration | url=https://archive.org/details/modularfunctions0000apos }} ''(See chapter 5 for a modern pedagogical intro to Rademacher's formula)''. * {{cite book |first=Miklós|last=Bóna | author-link = Miklós Bóna |title=A Walk Through Combinatorics: An Introduction to Enumeration and Graph Theory |publisher=World Scientific Publishing |year=2002 |isbn=981-02-4900-4}} (an elementary introduction to the topic of integer partitions, including a discussion of Ferrers graphs) * {{wikicite|reference={{Hardy and Wright|citation=cite book}}|ref={{harvid|Hardy|Wright|2008}}}} * {{cite journal|first1=D. H.|last1=Lehmer|author1-link=D. H. Lehmer | title=On the remainder and convergence of the series for the partition function | journal=Trans. Amer. Math. Soc. | volume=46 | year=1939 | pages=362–373 | doi=10.1090/S0002-9947-1939-0000410-9 | mr=0000410 | zbl=0022.20401 | doi-access=free }} Provides the main formula (no derivatives), remainder, and older form for ''A''<sub>''k''</sub>(''n'').) * {{cite book|first1=Hansraj|last1=Gupta|last2=Gwyther|first2=C.E.|last3=Miller|first3=J.C.P.|title=Royal Society of Math. Tables|volume=4, Tables of partitions|date=1962}} ''(Has text, nearly complete bibliography, but they (and Abramowitz) missed the Selberg formula for'' ''A''<sub>''k''</sub>(''n''), ''which is in Whiteman.)'' * {{cite book | first=Ian G. | last=Macdonald | author-link=Ian G. Macdonald | title=Symmetric functions and Hall polynomials | series=Oxford Mathematical Monographs | publisher=[[Oxford University Press]] | year=1979 | isbn=0-19-853530-9 | zbl=0487.20007 }} (See section I.1) * {{cite book | title=Elementary Methods in Number Theory | volume=195 | series=Graduate Texts in Mathematics | first=M.B. | last=Nathanson | publisher=[[Springer-Verlag]] | year=2000 | isbn=0-387-98912-9 | zbl=0953.11002 }} * {{cite book|author-link=Hans Rademacher|first=Hans|last=Rademacher|title=Collected Papers of Hans Rademacher|date=1974|publisher=MIT Press|volume=v II|pages= 100–07, 108–22, 460–75}} * {{cite book|author-link=Marcus du Sautoy|last=Sautoy|first=Marcus Du.|title=The Music of the Primes|url=https://archive.org/details/musicofprimessea00dusa|url-access=registration|location=New York|publisher=Perennial-HarperCollins|date=2003|isbn=9780066210704}} * {{cite book|author-link=Richard P. Stanley|first=Richard P.|last=Stanley|url=http://www-math.mit.edu/~rstan/ec/|title=Enumerative Combinatorics|volume=1 and 2|publisher=Cambridge University Press|date=1999|isbn=0-521-56069-1}} * {{cite journal | first=A. L. | last=Whiteman | url=http://projecteuclid.org/Dienst/UI/1.0/Summarize/euclid.pjm/1103044252 | title=A sum connected with the series for the partition function | journal=Pacific Journal of Mathematics | volume=6 | number=1 | year=1956 | pages=159–176 | doi=10.2140/pjm.1956.6.159 | zbl=0071.04004 | doi-access=free }} ''(Provides the Selberg formula. The older form is the finite Fourier expansion of Selberg.)''
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)