Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Inverse problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===== Computed tomography ===== In [[X-ray computed tomography]] the lines on which the parameter is integrated are straight lines: the [[tomographic reconstruction]] of the parameter distribution is based on the inversion of the [[Radon transform]]. Although from a theoretical point of view many linear inverse problems are well understood, problems involving the Radon transform and its generalisations still present many theoretical challenges with questions of sufficiency of data still unresolved. Such problems include incomplete data for the x-ray transform in three dimensions and problems involving the generalisation of the x-ray transform to tensor fields. Solutions explored include [[Algebraic Reconstruction Technique]], [[filtered backprojection]], and as computing power has increased, [[iterative reconstruction]] methods such as [[SAMV (algorithm)|iterative Sparse Asymptotic Minimum Variance]].<ref name=AbeidaZhang>{{cite journal | last1=Abeida | first1=Habti | last2=Zhang | first2=Qilin | last3=Li | first3=Jian | last4=Merabtine | first4=Nadjim | title=Iterative Sparse Asymptotic Minimum Variance Based Approaches for Array Processing | journal=IEEE Transactions on Signal Processing | volume=61 | issue=4 | year=2013 | issn=1053-587X | doi=10.1109/tsp.2012.2231676 | pages=933β944 | url=https://qilin-zhang.github.io/_pages/pdfs/SAMVpaper.pdf | arxiv=1802.03070 | bibcode=2013ITSP...61..933A | s2cid=16276001 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)