Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
LC circuit
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Laplace solution== The LC circuit can be solved using the [[Laplace transform]]. We begin by defining the relation between current and voltage across the capacitor and inductor in the usual way: :<math> v_\mathrm{C}(t) = v(t)\ , ~</math> <math> i(t) = C\ \frac{\mathrm{d}\ v_\mathrm{C}}{\mathrm{d}t}\ , ~ </math> and <math> ~ v_\mathrm{L}(t) = L\ \frac{\mathrm{d}\ i}{\mathrm{d}t} \;.</math> Then by application of Kirchhoff's laws, we may arrive at the system's governing differential equations :<math> v_{in} (t) = v_\mathrm{L} (t) + v_\mathrm{C}(t) = L\ \frac{ \mathrm{d}\ i }{\mathrm{d}t} + v = L\ C\ \frac{\mathrm{d}^2\ v}{\mathrm{d}t^2} + v \;.</math> With initial conditions <math>\ v(0) = v_0\ </math> and <math>\ i(0) = i_0 = C \cdot v'(0) = C \cdot v'_0 \;. </math> Making the following definitions, :<math> \omega_0 \equiv \frac{1}{\ \sqrt{L\ C\ } } ~</math> and <math>~ f(t) \equiv \omega_0^2\ v_\mathrm{in} (t) </math> gives :<math> f(t) = \frac{\ \mathrm{d}^2\ v\ }{\mathrm{d}t^2} + \omega_0^2\ v \;.</math> Now we apply the Laplace transform. :<math> \operatorname\mathcal{L} \left[\ f(t)\ \right] = \operatorname\mathcal{L} \left[\ \frac{\ \mathrm{d}^2\ v\ }{ \mathrm{d}t^2 } + \omega_0^2\ v\ \right] \,,</math> :<math> F(s) = s^2\ V(s) - s\ v_0 - v'_0 + \omega_0^2\ V(s) \;.</math> The Laplace transform has turned our differential equation into an algebraic equation. Solving for {{mvar|V}} in the {{mvar|s}} domain (frequency domain) is much simpler viz. :<math> V(s) = \frac{\ s\ v_0 + v'_0 + F(s)\ }{ s^2 + \omega_0^2 } </math> :<math> V(s) = \frac{\ s\ v_0 }{ s^2 + \omega_0^2 } + \frac{v'_0}{ s^2 + \omega_0^2 } + \frac{F(s)\ }{ s^2 + \omega_0^2 } \,, </math> Which can be transformed back to the time domain via the inverse Laplace transform: :<math> v(t) = \operatorname\mathcal{L}^{-1} \left[\ V(s) \ \right]</math> :<math> v(t) = \operatorname\mathcal{L}^{-1} \left[\ \frac{\ s\ v_0 }{ s^2 + \omega_0^2 } + \frac{v'_0}{ s^2 + \omega_0^2 } + \frac{F(s)\ }{ s^2 + \omega_0^2 }\ \right], </math> For the second summand, an equivalent fraction of <math>\omega_0</math> is needed: :<math> v(t) = v_0 \operatorname\mathcal{L}^{-1} \left[\ \frac{ s }{ s^2 + \omega_0^2 }\ \right] + v'_0 \operatorname\mathcal{L}^{-1}\left[\ \frac{ \omega_0 }{ \omega_0 ( s^2 + \omega_0^2 )}\ \right] + \operatorname\mathcal{L}^{-1} \left[\ \frac{F(s)\ }{ s^2 + \omega_0^2 }\ \right], </math> For the second summand, an equivalent fraction of <math>\omega_0</math> is needed: :<math> v(t) = v_0 \operatorname\mathcal{L}^{-1} \left[\ \frac{ s }{ s^2 + \omega_0^2 }\ \right] + \frac{v'_0}{\omega_0} \operatorname\mathcal{L}^{-1}\left[\ \frac{ \omega_0 }{ ( s^2 + \omega_0^2 )}\ \right] + \operatorname\mathcal{L}^{-1} \left[\ \frac{F(s)\ }{ s^2 + \omega_0^2 }\ \right], </math> :<math> v(t) = v_0\cos(\omega_0\ t)+ \frac{ v'_0 }{\ \omega_0\ }\ \sin(\omega_0\ t) + \operatorname\mathcal{L}^{-1} \left[\ \frac{ F(s) }{\ s^2 + \omega_0^2\ }\ \right] </math> The final term is dependent on the exact form of the input voltage. Two common cases are the [[Heaviside step function]] and a [[sine wave]]. For a Heaviside step function we get :<math> v_\mathrm{in}(t) = M\ u(t) \,,</math> :<math> \operatorname\mathcal{L}^{-1}\left[\ \omega_0^2 \frac{ V_\mathrm{in}(s) }{\ s^2 + \omega_0^2\ }\ \right] ~=~ \operatorname\mathcal{L}^{-1}\left[\ \omega_0^2\ M\ \frac{1}{\ s\ (s^2 + \omega_0^2)\ }\ \right] ~=~ M\ \Bigl( 1 - \cos(\omega_0\ t) \Bigr) \,,</math> :<math> v(t) = v_0 \ \cos(\omega_0\ t)+ \frac{ v'_0 }{ \omega_0 }\ \sin(\omega_0\ t) + M\ \Bigl(1-\cos(\omega_0\ t)\Bigr) \;.</math> For the case of a sinusoidal function as input we get: :<math> v_\mathrm{in}(t) = U\ \sin(\omega_\mathrm{f}\ t) \Rightarrow V_\mathrm{in}(s)= \frac{\ U\ \omega_\mathrm{f}\ }{\ s^2 + \omega_\mathrm{f}^2 \ } \, </math> where <math>U</math> is the amplitude and <math>\omega_f</math> the frequency of the applied function. :<math> \operatorname\mathcal{L}^{-1}\left[\ \omega_0^2\ \frac{1}{\ s^2 + \omega_0^2\ }\ \frac{U\ \omega_\mathrm{f}}{\ s^2+\omega_\mathrm{f}^2\ }\ \right] </math> Using the partial fraction method: :<math> \operatorname\mathcal{L}^{-1}\left[\ \omega_0^2\ U\ \omega_\mathrm{f} \frac{1}{\ s^2 + \omega_0^2\ }\ \frac{1}{\ s^2+\omega_\mathrm{f}^2\ }\ \right] = \operatorname\mathcal{L}^{-1}\left[\ \omega_0^2\ U\ \omega_\mathrm{f} \frac{A + Bs}{\ s^2 + \omega_0^2\ }\ + \frac{C + Ds}{\ s^2+\omega_\mathrm{f}^2\ }\ \right] </math> Simplifiying on both sides :<math> 1 = (A + Bs)( \ s^2 + \omega_\mathrm{f}^2\ ) + (C + Ds)( \ s^2 + \omega_0^2\ ) </math> :<math> 1 = ( A\ s^2 + \ A\ \omega_\mathrm{f}^2\ + \ B\ s^3 + \ B\ \omega_\mathrm{f}^2\ ) + ( C\ s^2 + \ C\ \omega_0^2\ + \ D\ s^3 + \ D\ s \omega_0^2\ ) </math> :<math> 1 = s^3 (B\ + \ D\ ) + s^2 (A\ + \ C) + s (B\ \omega_\mathrm{f}^2 + \ D\ \omega_0^2) + (A\ \omega_\mathrm{f}^2\ + \ C\ \omega_0^2) </math> We solve the equation for A, B and C: :<math> A+C=0 \Rightarrow C=-A </math> :<math> A\ \omega_\mathrm{f}^2\ + \ C\ \omega_0^2 = 1 \Rightarrow A\ \omega_\mathrm{f}^2\ - \ A\ \omega_0^2 = 1 </math> :<math> \Rightarrow A\ = \frac{1}{(\omega_\mathrm{f}^2\ - \omega_0^2) } </math> :<math> \Rightarrow C\ = -\frac{1}{(\omega_\mathrm{f}^2\ - \omega_0^2) } </math> :<math>B + C = 0</math> :<math>B\ \omega_\mathrm{f}^2 + \ D\ \omega_0^2 = 0 \Rightarrow B\ \omega_\mathrm{f}^2 - \ B\ \omega_0^2 = 0 \Rightarrow B\ (\omega_\mathrm{f}^2 - \omega_0^2) = 0 </math> :<math> \Rightarrow B = 0 , \ D = 0 </math> Substitute the values of A, B and C: :<math> \operatorname\mathcal{L}^{-1}\left[\ \omega_0^2\ U\ \omega_\mathrm{f} \frac{\frac{1}{(\omega_\mathrm{f}^2\ - \omega_0^2) }}{\ s^2 + \omega_0^2\ } + \frac{ -\frac{1}{(\omega_\mathrm{f}^2\ - \omega_0^2) }}{\ s^2+\omega_\mathrm{f}^2\ }\ \right] </math> Isolating the constant and using equivalent fractions to adjust for lack of numerator: :<math> \frac{\ \omega_0^2\ U\omega_\mathrm{f}\ }{\ \omega_\mathrm{f}^2-\omega_0^2\ } \operatorname\mathcal{L}^{-1}\left[ \left(\frac{ \omega_0 }{ \omega_0 (s^2 + \omega_0^2)} - \frac{ \omega_f }{ \omega_f (s^2+\omega_f^2)}\right) \right] \, </math> Performing the reverse Laplace transform on each summands: :<math> \frac{\ \omega_0^2\ U\omega_\mathrm{f}\ }{\ \omega_\mathrm{f}^2-\omega_0^2\ } \left( \operatorname\mathcal{L}^{-1}\left[\ \frac{1}{\omega_0} \frac{ \omega_0 }{ (s^2 + \omega_0^2)} \right] - \operatorname\mathcal{L}^{-1}\left[\frac{1}{\omega_\mathrm{f}\ } \frac{ \omega_\mathrm{f}\ }{ (s^2+\omega_f^2)} \right] \right) \, </math> :<math> \frac{\ \omega_0^2\ U\omega_\mathrm{f}\ }{\ \omega_\mathrm{f}^2-\omega_0^2\ } \left(\frac{1}{\omega_0} \operatorname\mathcal{L}^{-1}\left[\frac{ \omega_0 }{ (s^2 + \omega_0^2)} \right] - \frac{1}{\omega_\mathrm{f}\ } \operatorname\mathcal{L}^{-1}\left[\frac{ \omega_\mathrm{f}\ }{ (s^2+\omega_f^2)} \right] \right) \, </math> :<math> v_\mathrm{in}(t) = \frac{\ \omega_0^2\ U\ \omega_\mathrm{f}\ }{ \omega_\mathrm{f}^2 - \omega_0^2 } \left( \frac{1}{\omega_0}\ \sin(\omega_0\ t) - \frac{1}{\ \omega_\mathrm{f}\ }\ \sin(\omega_\mathrm{f}\ t) \right) \;, </math> Using initial conditions in the Laplace solution: :<math> v(t) = v_0 \cos(\omega_0\ t)+ \frac{ v'_0}{ \omega_0\ }\ \sin(\omega_0\ t) + \frac{ \omega_0^2\ U\ \omega_\mathrm{f} }{\ \omega_\mathrm{f}^2 - \omega_0^2\ }\left(\frac{1}{\omega_0}\ \sin(\omega_0\ t) - \frac{1}{\ \omega_\mathrm{f}\ }\ \sin(\omega_\mathrm{f}\ t) \right) \;.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)