Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Laws of Form
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===An example of calculation=== The following calculation of [[Gottfried Wilhelm Leibniz|Leibniz]]'s nontrivial ''Praeclarum Theorema'' exemplifies the demonstrative power of the ''primary algebra''. Let C1 be <math>\overline{\overline{A |} \Big|}</math> =''A'', C2 be <math>A \ \overline{A \ B |} = A \ \overline{B |}</math>, C3 be <math>\overline{\ \ |} \ A = \overline{\ \ |}</math>, J1a be <math>\overline{A |} \ A = \overline{\ \ |}</math>, and let OI mean that variables and subformulae have been reordered in a way that commutativity and associativity permit. {| | [(''P''β''R'')β§(''Q''β''S'')]β[(''P''β§''Q'')β(''R''β§''S'')]. | ''Praeclarum Theorema''. |- | {| | {| style="border-top: 2px solid black; border-right: 2px solid black;" | {| style="border-top: 2px solid black; border-right: 2px solid black; | {| style="border-top: 2px solid black; border-right: 2px solid black;" | {| style="border-top: 2px solid black; border-right: 2px solid black;" | P |} | R |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | {| style="border-top: 2px solid black; border-right: 2px solid black;" | Q |} | S |} |} |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | {| style="border-top: 2px solid black; border-right: 2px solid black;" | {| style="border-top: 2px solid black; border-right: 2px solid black;" | P |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | Q |} |} |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | {| style="border-top: 2px solid black; border-right: 2px solid black;" | R |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | S |} |} | . |} | ''primary algebra'' translation |- | {| | {| style="border-top: 2px solid black; border-right: 2px solid black;" | {| style="border-top: 2px solid black; border-right: 2px solid black;" | P |} | R |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | {| style="border-top: 2px solid black; border-right: 2px solid black;" | Q |} | S |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | {| style="border-top: 2px solid black; border-right: 2px solid black;" | {| style="border-top: 2px solid black; border-right: 2px solid black;" | P |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | Q |} |} |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | {| style="border-top: 2px solid black; border-right: 2px solid black;" | R |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | S |} |} | . |} | C1. |- | {| | {| style="border-top: 2px solid black; border-right: 2px solid black;" | {| style="border-top: 2px solid black; border-right: 2px solid black;" | P |} | R |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | {| style="border-top: 2px solid black; border-right: 2px solid black;" | Q |} | S |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | P |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | Q |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | {| style="border-top: 2px solid black; border-right: 2px solid black;" | R |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | S |} |} | . |} | C1. |- | {| | {| style="border-top: 2px solid black; border-right: 2px solid black;" | P |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | {| style="border-top: 2px solid black; border-right: 2px solid black;" | P |} | R |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | {| style="border-top: 2px solid black; border-right: 2px solid black;" | Q |} | S |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | Q |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | {| style="border-top: 2px solid black; border-right: 2px solid black;" | R |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | S |} |} | . |} | OI. |- | {| | {| style="border-top: 2px solid black; border-right: 2px solid black;" | P |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | R |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | {| style="border-top: 2px solid black; border-right: 2px solid black;" | Q |} | S |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | Q |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | {| style="border-top: 2px solid black; border-right: 2px solid black;" | R |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | S |} |} | . |} | C2. |- | {| | {| style="border-top: 2px solid black; border-right: 2px solid black;" | P |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | R |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | Q |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | {| style="border-top: 2px solid black; border-right: 2px solid black;" | Q |} | S |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | {| style="border-top: 2px solid black; border-right: 2px solid black;" | R |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | S |} |} | . |} | OI. |- | {| | {| style="border-top: 2px solid black; border-right: 2px solid black;" | P |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | R |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | Q |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | S |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | {| style="border-top: 2px solid black; border-right: 2px solid black;" | R |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | S |} |} | . |} | C2. |- | {| | {| style="border-top: 2px solid black; border-right: 2px solid black;" | P |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | Q |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | S |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | R |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | {| style="border-top: 2px solid black; border-right: 2px solid black;" | R |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | S |} |} | . |} | OI. |- | {| | {| style="border-top: 2px solid black; border-right: 2px solid black;" | P |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | Q |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | S |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | R |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | {| style="border-top: 2px solid black; border-right: 2px solid black;" | S |} |} | . |} | C2. |- | {| | {| style="border-top: 2px solid black; border-right: 2px solid black;" | P |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | Q |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | S |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | R |} | S | . |} | C1. |- | {| | {| style="border-top: 2px solid black; border-right: 2px solid black;" | P |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | Q |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | S |} | S | {| style="border-top: 2px solid black; border-right: 2px solid black;" | R |} | . |} | OI. |- | {| | {| style="border-top: 2px solid black; border-right: 2px solid black;" | P |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | Q |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | <span style="color:white;">B</span> |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | R |} | . |} | J1a. |- | {| | {| style="border-top: 2px solid black; border-right: 2px solid black;" | <span style="color:white;">B</span> |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | P |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | Q |} | {| style="border-top: 2px solid black; border-right: 2px solid black;" | R |} |. |} | OI. |- | {| style="border-top: 2px solid black; border-right: 2px solid black;" | <span style="color:white;">B</span> |} | C3. <math>\square</math> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)