Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Limit of a sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Sequence of more than one index== Sometimes one may also consider a sequence with more than one index, for example, a double sequence <math>(x_{n, m})</math>. This sequence has a limit <math>L</math> if it becomes closer and closer to <math>L</math> when both ''n'' and ''m'' becomes very large. ===Example=== *If <math>x_{n, m} = c</math> for constant <math display="inline">c</math>, then <math>x_{n,m} \to c</math>. *If <math>x_{n, m} = \frac{1}{n + m}</math>, then <math>x_{n, m} \to 0</math>. *If <math>x_{n, m} = \frac{n}{n + m}</math>, then the limit does not exist. Depending on the relative "growing speed" of <math display="inline">n</math> and <math display="inline">m</math>, this sequence can get closer to any value between <math display="inline">0</math> and <math display="inline">1</math>. ===Definition=== We call <math>x</math> the '''double limit''' of the [[sequence]] <math>(x_{n, m})</math>, written :<math>x_{n, m} \to x</math>, or :<math>\lim_{\begin{smallmatrix} n \to \infty \\ m \to \infty \end{smallmatrix}} x_{n, m} = x</math>, if the following condition holds: :For each [[real number]] <math>\varepsilon > 0</math>, there exists a [[natural number]] <math>N</math> such that, for every pair of natural numbers <math>n, m \geq N</math>, we have <math>|x_{n, m} - x| < \varepsilon</math>.<ref name="Zakon">{{cite book|chapter=Chapter 4. Function Limits and Continuity|pages=223|title=Mathematical Anaylysis, Volume I|year=2011|last1=Zakon|first1=Elias|publisher=University of Windsor |isbn=9781617386473}}</ref> In other words, for every measure of closeness <math>\varepsilon</math>, the sequence's terms are eventually that close to the limit. The sequence <math>(x_{n, m})</math> is said to '''converge to''' or '''tend to''' the limit <math>x</math>. Symbolically, this is: :<math>\forall \varepsilon > 0 \left(\exists N \in \N \left(\forall n, m \in \N \left(n, m \geq N \implies |x_{n, m} - x| < \varepsilon \right)\right)\right) </math>. The double limit is different from taking limit in ''n'' first, and then in ''m''. The latter is known as [[iterated limit]]. Given that both the double limit and the iterated limit exists, they have the same value. However, it is possible that one of them exist but the other does not. ===Infinite limits=== A sequence <math>(x_{n,m})</math> is said to '''tend to infinity''', written :<math>x_{n,m} \to \infty</math>, or :<math>\lim_{\begin{smallmatrix} n \to \infty \\ m \to \infty \end{smallmatrix}}x_{n,m} = \infty</math>, if the following holds: :For every real number <math>K</math>, there is a natural number <math>N</math> such that for every pair of natural numbers <math>n,m \geq N</math>, we have <math>x_{n,m} > K</math>; that is, the sequence terms are eventually larger than any fixed <math>K</math>. Symbolically, this is: :<math>\forall K \in \mathbb{R} \left(\exists N \in \N \left(\forall n, m \in \N \left(n, m \geq N \implies x_{n, m} > K \right)\right)\right)</math>. Similarly, a sequence <math>(x_{n,m})</math> '''tends to minus infinity''', written :<math>x_{n,m} \to -\infty</math>, or :<math>\lim_{\begin{smallmatrix} n \to \infty \\ m \to \infty \end{smallmatrix}}x_{n,m} = -\infty</math>, if the following holds: :For every real number <math>K</math>, there is a natural number <math>N</math> such that for every pair of natural numbers <math>n,m \geq N</math>, we have <math>x_{n,m} < K</math>; that is, the sequence terms are eventually smaller than any fixed <math>K</math>. Symbolically, this is: :<math>\forall K \in \mathbb{R} \left(\exists N \in \N \left(\forall n, m \in \N \left(n, m \geq N \implies x_{n, m} < K \right)\right)\right)</math>. If a sequence tends to infinity or minus infinity, then it is divergent. However, a divergent sequence need not tend to plus or minus infinity, and the sequence <math>x_{n,m}=(-1)^{n+m}</math> provides one such example. ===Pointwise limits and uniform limits=== For a double sequence <math>(x_{n,m})</math>, we may take limit in one of the indices, say, <math>n \to \infty</math>, to obtain a single sequence <math>(y_m)</math>. In fact, there are two possible meanings when taking this limit. The first one is called '''pointwise limit''', denoted :<math>x_{n, m} \to y_m\quad \text{pointwise}</math>, or :<math>\lim_{n \to \infty} x_{n, m} = y_m\quad \text{pointwise}</math>, which means: :For each [[real number]] <math>\varepsilon > 0</math> and each fixed [[natural number]] <math>m</math>, there exists a natural number <math>N(\varepsilon, m) > 0</math> such that, for every natural number <math>n \geq N</math>, we have <math>|x_{n, m} - y_m| < \varepsilon</math>.<ref name="Habil">{{Cite web|url=https://www.researchgate.net/publication/242705642|date=2005|title=Double Sequences and Double Series|last=Habil|first=Eissa|language=en|access-date=2022-10-28}}</ref> Symbolically, this is: :<math>\forall \varepsilon > 0 \left( \forall m \in \mathbb{N} \left(\exists N \in \N \left(\forall n \in \N \left(n \geq N \implies |x_{n, m} - y_m| < \varepsilon \right)\right)\right)\right)</math>. When such a limit exists, we say the sequence <math>(x_{n, m})</math> [[pointwise convergence|converges pointwise]] to <math>(y_m)</math>. The second one is called '''uniform limit''', denoted :<math>x_{n, m} \to y_m \quad \text{uniformly}</math>, :<math>\lim_{n \to \infty} x_{n, m} = y_m \quad \text{uniformly}</math>, :<math>x_{n, m} \rightrightarrows y_m </math>, or :<math>\underset{n\to\infty}{\mathrm{unif} \lim} \; x_{n, m} = y_m </math>, which means: :For each [[real number]] <math>\varepsilon > 0</math>, there exists a natural number <math>N(\varepsilon) > 0</math> such that, for every [[natural number]] <math>m</math> and for every natural number <math>n \geq N</math>, we have <math>|x_{n, m} - y_m| < \varepsilon</math>.<ref name="Habil"/> Symbolically, this is: :<math>\forall \varepsilon > 0 \left(\exists N \in \N \left( \forall m \in \mathbb{N} \left(\forall n \in \N \left(n \geq N \implies |x_{n, m} - y_m| < \varepsilon \right)\right)\right)\right)</math>. In this definition, the choice of <math>N</math> is independent of <math>m</math>. In other words, the choice of <math>N</math> is ''uniformly applicable'' to all natural numbers <math>m</math>. Hence, one can easily see that uniform convergence is a stronger property than pointwise convergence: the existence of uniform limit implies the existence and equality of pointwise limit: :If <math>x_{n, m} \to y_m</math> uniformly, then <math>x_{n, m} \to y_m</math> pointwise. When such a limit exists, we say the sequence <math>(x_{n, m})</math> [[uniform convergence|converges uniformly]] to <math>(y_m)</math>. ===Iterated limit=== For a double sequence <math>(x_{n,m})</math>, we may take limit in one of the indices, say, <math>n \to \infty</math>, to obtain a single sequence <math>(y_m)</math>, and then take limit in the other index, namely <math>m \to \infty</math>, to get a number <math>y</math>. Symbolically, :<math>\lim_{m \to \infty} \lim_{n \to \infty} x_{n, m} = \lim_{m \to \infty} y_m = y</math>. This limit is known as '''[[iterated limit]]''' of the double sequence. The order of taking limits may affect the result, i.e., :<math>\lim_{m \to \infty} \lim_{n \to \infty} x_{n, m} \ne \lim_{n \to \infty} \lim_{m \to \infty} x_{n, m}</math> in general. A sufficient condition of equality is given by the [[Moore-Osgood theorem]], which requires the limit <math>\lim_{n \to \infty}x_{n, m} = y_m</math> to be uniform in <math display="inline">m</math>.<ref name="Zakon" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)