Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Linear time-invariant system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Examples === {{bulleted list | A simple example of an LTI operator is the delay operator <math>D\{x[n]\} \mathrel{\stackrel{\text{def}}{=}} x[n-1]</math>. * <math> D \left( c_1 \cdot x_1[n] + c_2 \cdot x_2[n] \right) = c_1 \cdot x_1[n - 1] + c_2\cdot x_2[n - 1] = c_1\cdot Dx_1[n] + c_2\cdot Dx_2[n]</math> (i.e., it is linear) * <math> D\{x[n - m]\} = x[n - m - 1] = x[(n - 1) - m] = D\{x\}[n - m]</math> (i.e., it is time invariant) The Z transform of the delay operator is a simple multiplication by ''z''<sup>β1</sup>. That is, <math display="block"> \mathcal{Z}\left\{Dx[n]\right\} = z^{-1} X(z). </math> | Another simple LTI operator is the averaging operator <math display="block"> \mathcal{A}\left\{x[n]\right\} \mathrel{\stackrel{\text{def}}{=}} \sum_{k=n-a}^{n+a} x[k].</math> Because of the linearity of sums, <math display="block">\begin{align} \mathcal{A}\left\{c_1 x_1[n] + c_2 x_2[n] \right\} &= \sum_{k=n-a}^{n+a} \left( c_1 x_1[k] + c_2 x_2[k] \right)\\ &= c_1 \sum_{k=n-a}^{n+a} x_1[k] + c_2 \sum_{k=n-a}^{n+a} x_2[k]\\ &= c_1 \mathcal{A}\left\{x_1[n] \right\} + c_2 \mathcal{A}\left\{x_2[n] \right\}, \end{align}</math> and so it is linear. Because, <math display="block">\begin{align} \mathcal{A}\left\{x[n-m]\right\} &= \sum_{k=n-a}^{n+a} x[k-m]\\ &= \sum_{k'=(n-m)-a}^{(n-m)+a} x[k']\\ &= \mathcal{A}\left\{x\right\}[n-m], \end{align}</math> it is also time invariant. }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)