Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Logarithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Graph of the logarithm function=== [[File:Logarithm inversefunctiontoexp.svg|right|thumb|The graph of the logarithm function {{math|log<sub>''b''</sub> (''x'')}} (blue) is obtained by [[Reflection (mathematics)|reflecting]] the graph of the function {{math|''b''<sup>''x''</sup>}} (red) at the diagonal line ({{math|1=''x'' = {{mvar|y}}}}).|alt=The graphs of two functions.]] As discussed above, the function {{math|log<sub>''b''</sub>}} is the inverse to the exponential function <math>x\mapsto b^x</math>. Therefore, their [[graph of a function|graphs]] correspond to each other upon exchanging the {{mvar|x}}- and the {{mvar|y}}-coordinates (or upon reflection at the diagonal line {{Math|1=''x'' = ''y''}}), as shown at the right: a point {{math|1=(''t'', ''u'' = {{mvar|b}}<sup>''t''</sup>)}} on the graph of {{Mvar|f}} yields a point {{math|1=(''u'', ''t'' = log<sub>''b''</sub> ''u'')}} on the graph of the logarithm and vice versa. As a consequence, {{math|log<sub>''b''</sub> (''x'')}} [[divergent sequence|diverges to infinity]] (gets bigger than any given number) if {{mvar|x}} grows to infinity, provided that {{mvar|b}} is greater than one. In that case, {{math|log<sub>''b''</sub>(''x'')}} is an [[increasing function]]. For {{math|''b'' < 1}}, {{math|log<sub>''b''</sub> (''x'')}} tends to minus infinity instead. When {{mvar|x}} approaches zero, {{math|log<sub>''b''</sub> ''x''}} goes to minus infinity for {{math|''b'' > 1}} (plus infinity for {{math|''b'' < 1}}, respectively).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)