Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Monotone convergence theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Monotonicity of the Lebesgue integral==== '''lemma 1.''' let the functions <math>f,g : X \to [0,+\infty]</math> be <math>(\Sigma,\operatorname{\mathcal B}_{\bar\R_{\geq 0}})</math>-measurable. *If <math>f \leq g</math> everywhere on <math>X,</math> then :<math>\int_X f\,d\mu \leq \int_X g\,d\mu.</math> *If <math> X_1,X_2 \in \Sigma </math> and <math>X_1 \subseteq X_2, </math> then :<math>\int_{X_1} f\,d\mu \leq \int_{X_2} f\,d\mu.</math> '''Proof.''' Denote by <math>\operatorname{SF}(h)</math> the set of [[simple function|simple]] <math>(\Sigma, \operatorname{\mathcal B}_{\R_{\geq 0}})</math>-measurable functions <math>s:X\to [0,\infty)</math> such that <math>0\leq s\leq h</math> everywhere on <math>X.</math> '''1.''' Since <math>f \leq g,</math> we have <math> \operatorname{SF}(f) \subseteq \operatorname{SF}(g), </math> hence :<math>\int_X f\,d\mu = \sup_{s\in {\rm SF}(f)}\int_X s\,d\mu \leq \sup_{s\in {\rm SF}(g)}\int_X s\,d\mu = \int_X g\,d\mu.</math> '''2.''' The functions <math>f\cdot {\mathbf 1}_{X_1}, f\cdot {\mathbf 1}_{X_2},</math> where <math>{\mathbf 1}_{X_i}</math> is the indicator function of <math>X_i</math>, are easily seen to be measurable and <math>f\cdot{\mathbf 1}_{X_1}\le f\cdot{\mathbf 1}_{X_2}</math>. Now apply '''1'''. =====Lebesgue integral as measure===== '''Lemma 2.''' Let <math>(\Omega,\Sigma,\mu)</math> be a measurable space, and let <math>s:\Omega\to{\mathbb R_{\geq 0}}</math> . be a simple <math>(\Sigma,\operatorname{\mathcal B}_{\R_{\geq 0}})</math>-measurable non-negative function. For a measurable subset <math>A \in \Sigma</math>, define :<math>\nu_s(A)=\int_A s(x)\,d\mu.</math> Then <math>\nu_s</math> is a measure on <math>(\Omega, \Sigma)</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)