Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Newton polynomial
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Examples=== The divided differences can be written in the form of a table. For example, for a function ''f'' is to be interpolated on points <math>x_0, \ldots, x_n</math>. Write :<math>\begin{matrix} x_0 & f(x_0) & & \\ & & {f(x_1)-f(x_0)\over x_1 - x_0} & \\ x_1 & f(x_1) & & {{f(x_2)-f(x_1)\over x_2 - x_1}-{f(x_1)-f(x_0)\over x_1 - x_0} \over x_2 - x_0} \\ & & {f(x_2)-f(x_1)\over x_2 - x_1} & \\ x_2 & f(x_2) & & \vdots \\ & & \vdots & \\ \vdots & & & \vdots \\ & & \vdots & \\ x_n & f(x_n) & & \\ \end{matrix}</math> Then the interpolating polynomial is formed as above using the topmost entries in each column as coefficients. For example, suppose we are to construct the interpolating polynomial to ''f''(''x'') = tan(''x'') using divided differences, at the points {| cellpadding=5px class="wikitable" style="text-align: right;" ! <math>n</math> !! <math>x_n</math> !! <math>f(x_n)</math> |- | <math>0</math> || <math>-\tfrac{3}{2}</math> || <math>-14.1014</math> |- | <math>1</math> || <math>-\tfrac{3}{4}</math> || <math>-0.931596</math> |- | <math>2</math> || <math>0</math> || <math>0</math> |- | <math>3</math> || <math>\tfrac{3}{4}</math> || <math>0.931596</math> |- | <math>4</math> || <math>\tfrac{3}{2}</math> || <math>14.1014</math> |} Using six digits of accuracy, we construct the table : <math>\begin{matrix} -\tfrac{3}{2} & -14.1014 & & & &\\ & & 17.5597 & & &\\ -\tfrac{3}{4} & -0.931596 & & -10.8784 & &\\ & & 1.24213 & & 4.83484 & \\ 0 & 0 & & 0 & & 0\\ & & 1.24213 & & 4.83484 &\\ \tfrac{3}{4} & 0.931596 & & 10.8784 & &\\ & & 17.5597 & & &\\ \tfrac{3}{2} & 14.1014 & & & &\\ \end{matrix}</math> Thus, the interpolating polynomial is :<math>\begin{align} &-14.1014+17.5597(x+\tfrac{3}{2})-10.8784(x+\tfrac{3}{2})(x+\tfrac{3}{4}) +4.83484(x+\tfrac{3}{2})(x+\tfrac{3}{4})(x)+0(x+\tfrac{3}{2})(x+\tfrac{3}{4})(x)(x-\tfrac{3}{4}) \\ ={}&-0.00005-1.4775x-0.00001x^2+4.83484x^3 \end{align}</math> Given more digits of accuracy in the table, the first and third coefficients will be found to be zero. Another example: The sequence <math>f_0</math> such that <math>f_0(1) = 6, f_0(2) = 9, f_0(3) = 2</math> and <math>f_0(4) = 5</math>, i.e., they are <math>6, 9, 2, 5</math> from <math>x_0 = 1</math> to <math>x_3 = 4</math>. You obtain the slope of order <math>1</math> in the following way: * <math>f_1(x_0, x_1) = \frac{f_0(x_1) - f_0(x_0)}{x_1 - x_0} = \frac{9 - 6}{2 - 1} = 3</math> * <math>f_1(x_1, x_2) = \frac{f_0(x_2) - f_0(x_1)}{x_2 - x_1} = \frac{2 - 9}{3 - 2} = -7</math> * <math>f_1(x_2, x_3) = \frac{f_0(x_3) - f_0(x_2)}{x_3 - x_2} = \frac{5 - 2}{4 - 3} = 3</math> As we have the slopes of order <math>1</math>, it is possible to obtain the next order: * <math>f_2(x_0, x_1, x_2) = \frac{f_1(x_1, x_2) - f_1(x_0, x_1)}{x_2 - x_0} = \frac{-7 - 3}{3 - 1} = -5</math> * <math>f_2(x_1, x_2, x_3) = \frac{f_1(x_2, x_3) - f_1(x_1, x_2)}{x_3 - x_1} = \frac{3 - (-7)}{4 - 2} = 5</math> Finally, we define the slope of order <math>3</math>: * <math>f_3(x_0, x_1, x_2, x_3) = \frac{f_2(x_1, x_2, x_3) - f_2(x_0, x_1, x_2)}{x_3 - x_0} = \frac{5 - (-5)}{4 - 1} = \frac{10}{3}</math> Once we have the slope, we can define the consequent polynomials: * <math>p_0(x) = 6</math>. * <math>p_1(x) = 6 + 3(x - 1)</math> * <math>p_2(x) = 6 + 3(x - 1) - 5(x - 1)(x - 2)</math>. * <math>p_3(x) = 6 + 3(x - 1) - 5(x - 1)(x - 2) + \frac{10}{3} (x - 1)(x - 2)(x - 3)</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)