Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Poisson summation formula
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Semiclassical trace formula=== The Selberg trace formula was later generalized to more general smooth manifolds (without any algebraic structure) by Gutzwiller, Balian-Bloch, Chazarain, Colin de Verdière, Duistermaat-Guillemin, Uribe, Guillemin-Melrose, Zelditch and others. The "wave trace" or "semiclassical trace" formula relates geometric and spectral properties of the underlying topological space. The spectral side is the trace of a unitary group of operators (e.g., the Schrödinger or wave propagator) which encodes the spectrum of a differential operator and the geometric side is a sum of distributions which are supported at the lengths of periodic orbits of a corresponding Hamiltonian system. The Hamiltonian is given by the principal symbol of the differential operator which generates the unitary group. For the Laplacian, the "wave trace" has singular support contained in the set of lengths of periodic geodesics; this is called the Poisson relation.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)