Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Probability density function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Vector to scalar=== Let <math> V: \R^n \to \R </math> be a differentiable function and <math> X </math> be a random vector taking values in <math> \R^n </math>, <math> f_X </math> be the probability density function of <math> X </math> and <math> \delta(\cdot) </math> be the [[Dirac delta]] function. It is possible to use the formulas above to determine <math> f_Y </math>, the probability density function of <math> Y = V(X) </math>, which will be given by <math display="block">f_Y(y) = \int_{\R^n} f_{X}(\mathbf{x}) \delta\big(y - V(\mathbf{x})\big) \,d \mathbf{x}.</math> This result leads to the [[law of the unconscious statistician]]: <math display="block">\begin{align} \operatorname{E}_Y[Y] &=\int_{\R} y f_Y(y) \, dy \\ &= \int_{\R} y \int_{\R^n} f_X(\mathbf{x}) \delta\big(y - V(\mathbf{x})\big) \,d \mathbf{x} \,dy \\ &= \int_{{\mathbb R}^n} \int_{\mathbb R} y f_{X}(\mathbf{x}) \delta\big(y - V(\mathbf{x})\big) \, dy \, d \mathbf{x} \\ &= \int_{\mathbb R^n} V(\mathbf{x}) f_X(\mathbf{x}) \, d \mathbf{x}=\operatorname{E}_X[V(X)]. \end{align}</math> ''Proof:'' Let <math>Z</math> be a collapsed random variable with probability density function <math>p_Z(z) = \delta(z)</math> (i.e., a constant equal to zero). Let the random vector <math>\tilde{X}</math> and the transform <math>H</math> be defined as <math display="block">H(Z,X)=\begin{bmatrix} Z+V(X)\\ X\end{bmatrix}=\begin{bmatrix} Y\\ \tilde{X}\end{bmatrix}.</math> It is clear that <math>H</math> is a bijective mapping, and the Jacobian of <math>H^{-1}</math> is given by: <math display="block">\frac{dH^{-1}(y,\tilde{\mathbf{x}})}{dy\,d\tilde{\mathbf{x}}}=\begin{bmatrix} 1 & -\frac{dV(\tilde{\mathbf{x}})}{d\tilde{\mathbf{x}}}\\ \mathbf{0}_{n\times1} & \mathbf{I}_{n\times n} \end{bmatrix},</math> which is an upper triangular matrix with ones on the main diagonal, therefore its determinant is 1. Applying the change of variable theorem from the previous section we obtain that <math display="block">f_{Y,X}(y,x) = f_X(\mathbf{x}) \delta\big(y - V(\mathbf{x})\big),</math> which if marginalized over <math>x</math> leads to the desired probability density function.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)