Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Projection (linear algebra)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== A matrix representation formula for a nonzero projection operator ==== Let <math>P \colon V \to V</math> be a linear operator such that <math>P^2 = P</math> and assume that <math>P</math> is not the zero operator. Let the vectors <math>\mathbf u_1, \ldots, \mathbf u_k</math> form a basis for the range of <math>P</math>, and assemble these vectors in the <math>n \times k</math> matrix <math>A</math>. Then <math>k \geq 1</math>, otherwise <math>k = 0</math> and <math>P</math> is the zero operator. The range and the kernel are complementary spaces, so the kernel has dimension <math>n - k</math>. It follows that the [[orthogonal complement]] of the kernel has dimension <math>k</math>. Let <math>\mathbf v_1, \ldots, \mathbf v_k</math> form a basis for the orthogonal complement of the kernel of the projection, and assemble these vectors in the matrix <math>B</math>. Then the projection <math>P</math> (with the condition <math>k \geq 1</math>) is given by <math display="block"> P = A \left(B^\mathsf{T} A\right)^{-1} B^\mathsf{T}. </math> This expression generalizes the formula for orthogonal projections given above.<ref>{{Citation | last1 = Banerjee | first1 = Sudipto | last2 = Roy | first2 = Anindya | date = 2014 | title = Linear Algebra and Matrix Analysis for Statistics | series = Texts in Statistical Science | publisher = Chapman and Hall/CRC | edition = 1st | isbn = 978-1420095388 | url=https://books.google.com/books?id=iIOhAwAAQBAJ&q=projection}}</ref><ref>Meyer, equation (7.10.39)</ref> A standard proof of this expression is the following. For any vector <math>\mathbf x</math> in the vector space <math>V</math>, we can decompose <math>\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2</math>, where vector <math>\mathbf{x}_1 = P(\mathbf{x})</math> is in the image of <math>P</math>, and vector <math>\mathbf{x}_2 = \mathbf{x} - P(\mathbf{x}).</math> So <math>P(\mathbf{x}_2) = P(\mathbf{x}) - P^2(\mathbf{x})= \mathbf{0}</math>, and then <math>\mathbf{x}_2</math> is in the kernel of <math>P</math>, which is the null space of <math>A.</math> In other words, the vector <math>\mathbf{x}_1</math> is in the column space of <math>A,</math> so <math>\mathbf{x}_1 = A \mathbf{w}</math> for some <math>k</math> dimension vector <math>\mathbf{w}</math> and the vector <math>\mathbf{x}_2</math> satisfies <math>B^\mathsf{T} \mathbf{x}_2=\mathbf{0}</math> by the construction of <math>B</math>. Put these conditions together, and we find a vector <math>\mathbf{w}</math> so that <math>B^\mathsf{T} (\mathbf{x}-A\mathbf{w})=\mathbf{0}</math>. Since matrices <math>A</math> and <math>B</math> are of full rank <math>k</math> by their construction, the <math>k\times k</math>-matrix <math>B^\mathsf{T} A</math> is invertible. So the equation <math>B^\mathsf{T} (\mathbf{x}-A\mathbf{w})=\mathbf{0}</math> gives the vector <math>\mathbf{w}= (B^{\mathsf{T}}A)^{-1} B^{\mathsf{T}} \mathbf{x}.</math> In this way, <math>P\mathbf{x} = \mathbf{x}_1 = A\mathbf{w}= A(B^{\mathsf{T}}A)^{-1} B^{\mathsf{T}} \mathbf{x}</math> for any vector <math>\mathbf{x} \in V</math> and hence <math>P = A(B^{\mathsf{T}}A)^{-1} B^{\mathsf{T}}</math>. In the case that <math>P</math> is an orthogonal projection, we can take <math>A = B</math>, and it follows that <math>P=A \left(A^\mathsf{T} A\right)^{-1} A^\mathsf{T}</math>. By using this formula, one can easily check that <math>P=P^\mathsf{T}</math>. In general, if the vector space is over complex number field, one then uses the [[Hermitian transpose]] <math>A^*</math> and has the formula <math>P=A \left(A^* A\right)^{-1} A^*</math>. Recall that one can express the [[Moore–Penrose inverse]] of the matrix <math>A</math> by <math>A^{+}= (A^*A)^{-1}A^*</math> since <math>A</math> has full column rank, so <math>P=A A^{+}</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)