Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Riemann zeta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Representations== ===Dirichlet series=== An extension of the area of convergence can be obtained by rearranging the original series.<ref name="Knopp">{{cite book|first=Konrad|last=Knopp|title=Theory of Functions, Part Two|url=https://archive.org/details/in.ernet.dli.2015.212186|date=1947|pages=[https://archive.org/details/in.ernet.dli.2015.212186/page/n57/mode/2up 51–55]|publisher=New York, Dover publications}}</ref> The series :<math>\zeta(s)=\frac{1}{s-1}\sum_{n=1}^\infty \left(\frac{n}{(n+1)^s}-\frac{n-s}{n^s}\right)</math> converges for {{math|Re(''s'') > 0}}, while :<math>\zeta(s) =\frac{1}{s-1}\sum_{n=1}^\infty\frac{n(n+1)}{2}\left(\frac{2n+3+s}{(n+1)^{s+2}}-\frac{2n-1-s}{n^{s+2}}\right)</math> converge even for {{math|Re(''s'') > −1}}. In this way, the area of convergence can be extended to {{math|Re(''s'') > −''k''}} for any negative integer {{math|−''k''}}. The recurrence connection is clearly visible from the expression valid for {{math|Re(''s'') > −2}} enabling further expansion by integration by parts. :<math>\begin{aligned} \zeta(s)= & 1+\frac{1}{s-1}-\frac{s}{2 !}[\zeta(s+1)-1] \\ - & \frac{s(s+1)}{3 !}[\zeta(s+2)-1] \\ & -\frac{s(s+1)(s+2)}{3 !} \sum_{n=1}^{\infty} \int_0^1 \frac{t^3 d t}{(n+t)^{s+3}} \end{aligned}</math> ===Mellin-type integrals=== The [[Mellin transform]] of a function {{math|''f''(''x'')}} is defined as<ref>{{cite journal |last=Riemann| first=Bernhard |title=[[On the number of primes less than a given magnitude]]|year=1859|journal=Monatsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin}} translated and reprinted in {{cite book|last=Edwards|first=H. M. |authorlink=Harold Edwards (mathematician) |year=1974 |title=Riemann's Zeta Function |publisher=Academic Press |location=New York |isbn=0-12-232750-0 |zbl=0315.10035}}</ref> :<math> \int_0^\infty f(x)x^s\, \frac{\mathrm{d}x}{x} </math> in the region where the integral is defined. There are various expressions for the zeta function as Mellin transform-like integrals. If the real part of {{mvar|s}} is greater than one, we have :<math>\Gamma(s)\zeta(s) =\int_0^\infty\frac{x^{s-1}}{e^x-1} \,\mathrm{d}x \quad</math> and <math>\quad\Gamma(s)\zeta(s) =\frac1{2s}\int_0^\infty\frac{x^{s}}{\cosh(x)-1} \,\mathrm{d}x</math>, where {{math|Γ}} denotes the [[gamma function]]. By modifying the [[Contour integration|contour]], Riemann showed that :<math>2\sin(\pi s)\Gamma(s)\zeta(s) =i\oint_H \frac{(-x)^{s-1}}{e^x-1}\,\mathrm{d}x </math> for all {{mvar|s}}<ref>Trivial exceptions of values of {{mvar|s}} that cause removable singularities are not taken into account throughout this article.</ref> (where {{mvar|H}} denotes the [[Hankel contour]]). We can also find expressions which relate to prime numbers and the [[prime number theorem]]. If {{math|''π''(''x'')}} is the [[prime-counting function]], then :<math>\ln \zeta(s) = s \int_0^\infty \frac{\pi(x)}{x(x^s-1)}\,\mathrm{d}x,</math> for values with {{math|Re(''s'') > 1}}. A similar Mellin transform involves the Riemann function {{math|''J''(''x'')}}, which counts prime powers {{math|''p''<sup>''n''</sup>}} with a weight of {{math|{{sfrac|1|''n''}}}}, so that : <math>J(x) = \sum \frac{\pi\left(x^\frac{1}{n}\right)}{n}.</math> Now :<math>\ln \zeta(s) = s\int_0^\infty J(x)x^{-s-1}\,\mathrm{d}x. </math> These expressions can be used to prove the prime number theorem by means of the inverse Mellin transform. Riemann's [[prime-counting function]] is easier to work with, and {{math|''π''(''x'')}} can be recovered from it by [[Möbius inversion formula|Möbius inversion]]. ===Theta functions=== The Riemann zeta function can be given by a Mellin transform<ref>{{Cite book |first=Jürgen |last=Neukirch |title=Algebraic number theory |publisher=Springer |date=1999 |page=422 |isbn=3-540-65399-6}}</ref> :<math>2\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s) = \int_0^\infty \bigl(\theta(it)-1\bigr)t^{\frac{s}{2}-1}\,\mathrm{d}t,</math> in terms of [[Theta function|Jacobi's theta function]] :<math>\theta(\tau)= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau}.</math> However, this integral only converges if the real part of {{mvar|s}} is greater than 1, but it can be regularized. This gives the following expression for the zeta function, which is well defined for all {{mvar|s}} except 0 and 1: :<math> \pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s) = \frac{1}{s-1}-\frac{1}{s} +\frac{1}{2} \int_0^1 \left(\theta(it)-t^{-\frac12}\right)t^{\frac{s}{2}-1}\,\mathrm{d}t + \frac{1}{2}\int_1^\infty \bigl(\theta(it)-1\bigr)t^{\frac{s}{2}-1}\,\mathrm{d}t.</math> ===Laurent series=== The Riemann zeta function is [[meromorphic]] with a single [[pole (complex analysis)|pole]] of order one at {{math|''s'' {{=}} 1}}. It can therefore be expanded as a [[Laurent series]] about {{math|''s'' {{=}} 1}}; the series development is then<ref>{{cite journal | last1 = Hashimoto | first1 = Yasufumi | last2 = Iijima | first2 = Yasuyuki | last3 = Kurokawa | first3 = Nobushige | last4 = Wakayama | first4 = Masato | doi = 10.36045/bbms/1102689119 | issue = 4 | journal = [[Simon Stevin (journal)|Bulletin of the Belgian Mathematical Society, Simon Stevin]] | mr = 2115723 | pages = 493–516 | title = Euler's constants for the Selberg and the Dedekind zeta functions | url = https://projecteuclid.org/euclid.bbms/1102689119 | volume = 11 | year = 2004| doi-access = free }}</ref> :<math>\zeta(s)=\frac{1}{s-1}+\sum_{n=0}^\infty \frac{\gamma_n}{n!}(1-s)^n.</math> The constants {{math|''γ''<sub>''n''</sub>}} here are called the [[Stieltjes constants]] and can be defined by the [[limit of a sequence|limit]] : <math> \gamma_n = \lim_{m \rightarrow \infty}{\left(\left(\sum_{k = 1}^m \frac{(\ln k)^n}{k}\right) - \frac{(\ln m)^{n+1}}{n+1}\right)}.</math> The constant term {{math|''γ''<sub>0</sub>}} is the [[Euler–Mascheroni constant]]. === Integral === For all {{math|''s'' ∈ ℂ}}, {{math|''s'' ≠ 1}}, the integral relation (cf. [[Abel–Plana formula]]) :<math>\ \zeta(s)\ =\ \frac{ 1 }{\ s - 1\ } + \frac{\ 1\ }{ 2 } + 2 \int_0^{\infty} \frac{ \sin(\ s\ \arctan t\ ) }{\ \left( 1 + t^2 \right)^{s/2} \left( e^{2\pi t} - 1 \right)\ }\ \operatorname{d} t\ </math> holds true, which may be used for a numerical evaluation of the zeta function. ===Rising factorial=== Another series development using the [[Pochhammer symbol|rising factorial]] valid for the entire complex plane is <ref name="Knopp"/> :<math>\zeta(s) = \frac{s}{s-1} - \sum_{n=1}^\infty \bigl(\zeta(s+n)-1\bigr)\frac{s(s+1)\cdots(s+n-1)}{(n+1)!}.</math> This can be used recursively to extend the Dirichlet series definition to all complex numbers. The Riemann zeta function also appears in a form similar to the Mellin transform in an integral over the [[Gauss–Kuzmin–Wirsing operator]] acting on {{math|''x''<sup>''s'' − 1</sup>}}; that context gives rise to a series expansion in terms of the [[falling factorial]].<ref>{{cite web|url=http://linas.org/math/poch-zeta.pdf |title=A series representation for the Riemann Zeta derived from the Gauss-Kuzmin-Wirsing Operator |website=Linas.org |access-date=2017-01-04}}</ref> ===Hadamard product=== On the basis of [[Weierstrass factorization theorem|Weierstrass's factorization theorem]], [[Hadamard]] gave the [[infinite product]] expansion :<math>\zeta(s) = \frac{e^{\left(\log(2\pi)-1-\frac{\gamma}{2}\right)s}}{2(s-1)\Gamma\left(1+\frac{s}{2}\right)} \prod_\rho \left(1 - \frac{s}{\rho} \right) e^\frac{s}{\rho},</math> where the product is over the non-trivial zeros {{mvar|ρ}} of {{math|''ζ''}} and the letter {{mvar|γ}} again denotes the [[Euler–Mascheroni constant]]. A simpler [[infinite product]] expansion is :<math>\zeta(s) = \pi^\frac{s}{2} \frac{\prod_\rho \left(1 - \frac{s}{\rho} \right)}{2(s-1)\Gamma\left(1+\frac{s}{2}\right)}.</math> This form clearly displays the simple pole at {{math|''s'' {{=}} 1}}, the trivial zeros at −2, −4, ... due to the gamma function term in the denominator, and the non-trivial zeros at {{math|''s'' {{=}} ''ρ''}}. (To ensure convergence in the latter formula, the product should be taken over "matching pairs" of zeros, i.e. the factors for a pair of zeros of the form {{mvar|ρ}} and {{math|1 − ''ρ''}} should be combined.) ===Globally convergent series=== A globally convergent series for the zeta function, valid for all complex numbers {{mvar|s}} except {{math|''s'' {{=}} 1 + {{sfrac|2π''i''|ln 2}}''n''}} for some integer {{mvar|n}}, was conjectured by [[Konrad Knopp]] in 1926 <ref name="blag2018" /> and proven by [[Helmut Hasse]] in 1930<ref name = Hasse1930 /> (cf. [[Euler summation]]): :<math>\zeta(s)=\frac{1}{1-2^{1-s}} \sum_{n=0}^\infty \frac {1}{2^{n+1}} \sum_{k=0}^n \binom{n}{k} \frac{(-1)^k}{(k+1)^{s}}.</math> The series appeared in an appendix to Hasse's paper, and was published for the second time by Jonathan Sondow in 1994.<ref>{{cite journal|first = Jonathan|last = Sondow|title = Analytic continuation of Riemann's zeta function and values at negative integers via Euler's transformation of series|journal = [[Proceedings of the American Mathematical Society]]|year = 1994|volume = 120|issue = 2|pages = 421–424|url = https://www.ams.org/journals/proc/1994-120-02/S0002-9939-1994-1172954-7/S0002-9939-1994-1172954-7.pdf|doi = 10.1090/S0002-9939-1994-1172954-7|doi-access = free}}</ref> Hasse also proved the globally converging series :<math>\zeta(s)=\frac 1{s-1}\sum_{n=0}^\infty \frac 1{n+1}\sum_{k=0}^n\binom {n}{k}\frac{(-1)^k}{(k+1)^{s-1}}</math> in the same publication.<ref name = Hasse1930 /> Research by Iaroslav Blagouchine<ref>{{cite journal | last = Blagouchine | first = Iaroslav V. | arxiv = 1501.00740 | doi = 10.1016/j.jnt.2015.06.012 | journal = [[Journal of Number Theory]] | pages = 365–396 | title = Expansions of generalized Euler's constants into the series of polynomials in {{pi}}<sup>−2</sup> and into the formal enveloping series with rational coefficients only | volume = 158 | year = 2016}}</ref><ref name="blag2018">{{cite journal | last = Blagouchine | first = Iaroslav V. | arxiv = 1606.02044 | url = http://math.colgate.edu/~integers/vol18a.html | journal = INTEGERS: The Electronic Journal of Combinatorial Number Theory | pages = 1–45 | title = Three Notes on Ser's and Hasse's Representations for the Zeta-functions | volume = 18A | year = 2018| doi = 10.5281/zenodo.10581385 | bibcode = 2016arXiv160602044B}}</ref> has found that a similar, equivalent series was published by [[Joseph Ser]] in 1926.<ref>{{cite journal|first = Joseph|last = Ser|author-link = Joseph Ser|title = Sur une expression de la fonction ζ(s) de Riemann|trans-title = Upon an expression for Riemann's ζ function|year = 1926|journal = [[Comptes rendus hebdomadaires des séances de l'Académie des Sciences]]|volume = 182|pages = 1075–1077|language = fr}}</ref> In 1997 K. Maślanka gave another globally convergent (except {{math|s {{=}} 1}}) series for the Riemann zeta function: :<math>\zeta (s)=\frac{1}{s-1}\sum_{k=0}^\infty \biggl(\prod_{i=1}^{k} (i-\frac{s}{2})\biggl) \frac{A_{k}}{k!}= \frac{1}{s-1} \sum_{k=0}^\infty \biggl(1-\frac{s}{2}\biggl)_{k} \frac{A_{k}}{k!}</math> where real coefficients <math>A_k</math> are given by: :<math>A_k=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}(2j+1)\zeta (2j+2)=\sum_{j=0}^{k}\binom{k}{j}\frac{B_{2j+2}\pi ^{2j+2}}{\left(2\right) _{j}\left( \frac{1}{2}\right) _{j}} </math> Here <math>B_{n}</math> are the Bernoulli numbers and <math>(x)_{k}</math> denotes the Pochhammer symbol.<ref>{{cite journal |first = Krzysztof |last = Maślanka |title = The Beauty of Nothingness |year = 1997 |journal = Acta Cosmologica |volume = XXIII-I |pages = 13–17}}</ref><ref>{{cite journal |first = Luis |last = Báez-Duarte |title = On Maslanka's Representation for the Riemann Zeta Function |year = 2010 |journal = [[International Journal of Mathematics and Mathematical Sciences]] |volume = 2010 |pages = 1–9 |doi = 10.1155/2010/714147 |doi-access = free |arxiv = math/0307214 }}</ref> Note that this representation of the zeta function is essentially an interpolation with nodes, where the nodes are points <math>s=2,4,6,\ldots </math>, i.e. exactly those where the zeta values are precisely known, as Euler showed. An elegant and very short proof of this representation of the zeta function, based on [[Carlson's theorem]], was presented by Philippe Flajolet in 2006.<ref>{{cite journal |first1 = Philippe |last1 = Flajolet |first2 = Linas |last2 = Vepstas |title = On Differences of Zeta Values |year = 2008 |journal = [[Journal of Computational and Applied Mathematics]] |volume = 220 |issue = 1–2 October |pages = 58–73 |doi = 10.1016/j.cam.2007.07.040 |arxiv = math/0611332|bibcode = 2008JCoAM.220...58F }}</ref> The asymptotic behavior of the coefficients <math>A_{k}</math> is rather curious: for growing <math>k</math> values, we observe regular oscillations with a nearly exponentially decreasing amplitude and slowly decreasing frequency (roughly as <math>k^{-2/3}</math>). Using the saddle point method, we can show that :<math>A_{k}\sim \frac{4\pi ^{3/2}}{\sqrt{3\kappa }}\exp \biggl( -\frac{3\kappa }{2}+\frac{\pi ^{2}}{4\kappa }\biggl) \cos \biggl( \frac{4\pi }{3}-\frac{3\sqrt{3} \kappa }{2}+\frac{\sqrt{3}\pi ^{2}}{4\kappa }\biggl)</math> where <math>\kappa</math> stands for: :<math>\kappa :=\sqrt[3]{\pi ^{2}k} </math> (see <ref>{{cite journal |first1 = Krzysztof |last1 = Maślanka |first2 = Andrzej |last2 = Koleżyński |title = The High Precision Numerical Calculation of Stieltjes Constants. Simple and Fast Algorithm |journal = Computational Methods in Science and Technology |year = 2022 |volume = 28 |issue = 2 |pages = 47–59 |doi = 10.12921/cmst.2022.0000014 |arxiv = 2210.04609 |s2cid = 252780397 }}</ref> for details). On the basis of this representation, in 2003 Luis Báez-Duarte provided a new criterion for the Riemann hypothesis.<ref>{{cite journal |first = Luis |last = Báez-Duarte |title = A New Necessary and Sufficient Condition for the Riemann Hypothesis |journal = Number Theory |arxiv = math/0307215 |year = 2003 |bibcode = 2003math......7215B }}</ref><ref>{{cite journal |first = Krzysztof |last = Maślanka |title = Báez-Duarte's Criterion for the Riemann Hypothesis and Rice's Integrals |journal = Number Theory |arxiv = math/0603713v2 |year = 2006 |bibcode = 2006math......3713M }}</ref><ref>{{cite journal |first = Marek |last = Wolf |title = Some remarks on the Báez-Duarte criterion for the Riemann Hypothesis |journal = Computational Methods in Science and Technology |volume = 20 |year = 2014 |issue = 2 |pages = 39–47 |doi = 10.12921/cmst.2014.20.02.39-47 |doi-access = free }}</ref> Namely, if we define the coefficients <math>c_{k}</math> as :<math>c_{k}:=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}\frac{1}{\zeta (2j+2)}</math> then the Riemann hypothesis is equivalent to :<math>c_{k}=\mathcal{O}\biggl( k^{-3/4+\varepsilon }\biggl) \qquad (\forall\varepsilon >0) </math> ===Rapidly convergent series=== [[Peter Borwein]] developed an algorithm that applies [[Chebyshev polynomial]]s to the [[Dirichlet eta function]] to produce a [[Dirichlet eta function#Borwein's method|very rapidly convergent series suitable for high precision numerical calculations]].<ref>{{cite book|first = Peter|last = Borwein|author-link = Peter Borwein|chapter-url = http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P155.pdf|chapter = An Efficient Algorithm for the Riemann Zeta Function|series = Conference Proceedings, Canadian Mathematical Society|year = 2000|title = Constructive, Experimental, and Nonlinear Analysis|volume = 27|pages = 29–34|isbn = 978-0-8218-2167-1|editor-first = Michel A.|editor-last = Théra|publisher = [[American Mathematical Society]], on behalf of the [[Canadian Mathematical Society]]|location = Providence, RI|access-date = 25 November 2017|archive-date = 26 July 2011|archive-url = https://web.archive.org/web/20110726090927/http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P155.pdf|url-status = dead}}</ref> ===Series representation at positive integers via the primorial=== : <math> \zeta(k)=\frac{2^k}{2^k-1}+\sum_{r=2}^\infty\frac{(p_{r-1}\#)^k}{J_k(p_r\#)}\qquad k=2,3,\ldots.</math> Here {{math|''p<sub>n</sub>''#}} is the [[primorial]] sequence and {{math|''J<sub>k</sub>''}} is [[Jordan's totient function]].<ref>{{cite journal |first=István |last=Mező |title=The primorial and the Riemann zeta function |journal= The American Mathematical Monthly |year=2013 |volume=120 |issue=4 |page=321 }}</ref> ===Series representation by the incomplete poly-Bernoulli numbers=== The function {{mvar|ζ}} can be represented, for {{math|Re(''s'') > 1}}, by the infinite series :<math>\zeta(s)=\sum_{n=0}^\infty B_{n,\ge2}^{(s)}\frac{(W_k(-1))^n}{n!},</math> where {{math|''k'' ∈ {−1, 0{{)}}}}, {{math|''W<sub>k</sub>''}} is the {{mvar|k}}th branch of the [[Lambert W function|Lambert {{mvar|W}}-function]], and {{math|''B''{{su|b=''n'', ≥2|p=(''μ'')}}}} is an incomplete poly-Bernoulli number.<ref>{{cite journal |first1=Takao |last1=Komatsu |first2=István |last2=Mező |title=Incomplete poly-Bernoulli numbers associated with incomplete Stirling numbers |journal=Publicationes Mathematicae Debrecen |year=2016 |volume=88 |issue=3–4 |pages=357–368 |doi=10.5486/pmd.2016.7361 |arxiv=1510.05799 |s2cid=55741906 }}</ref> ===The Mellin transform of the Engel map=== The function <math>g(x) = x \left( 1+\left\lfloor x^{-1}\right\rfloor \right) -1</math> is iterated to find the coefficients appearing in [[Engel expansion]]s.<ref>{{Cite web|url=http://oeis.org/A220335|title=A220335 - OEIS|website=oeis.org|access-date=2019-04-17}}</ref> The [[Mellin transform]] of the map <math>g(x)</math> is related to the Riemann zeta function by the formula :<math> \begin{align} \int_0^1 g (x) x^{s - 1} \, dx & = \sum_{n = 1}^\infty \int_{\frac{1}{n + 1}}^{\frac{1}{n}} (x (n + 1) - 1) x^{s - 1} \, d x\\[6pt] & = \sum_{n = 1}^\infty \frac{n^{- s} (s - 1) + (n + 1)^{- s - 1} (n^2 + 2 n + 1) + n^{- s - 1} s - n^{1 - s}}{(s + 1) s (n + 1)}\\[6pt] & = \frac{\zeta (s + 1)}{s + 1} - \frac{1}{s (s + 1)} \end{align}</math> ===Thue-Morse sequence=== Certain linear combinations of Dirichlet series whose coefficients are terms of the [[Thue-Morse sequence]] give rise to identities involving the Riemann Zeta function.<ref> {{cite journal|author1-link=Tóth|last1=Tóth|first1=László|title=Linear Combinations of Dirichlet Series Associated with the Thue-Morse Sequence|journal=Integers|volume=22|year=2022|issue=article 98|arxiv=2211.13570 }} </ref> For instance: :<math> \begin{align} \sum_{n\geq1} \frac{5 t_{n-1} + 3 t_n}{n^2} &= 4 \zeta(2) = \frac{2 \pi^2}{3}, \\ \sum_{n\geq1} \frac{9 t_{n-1} + 7 t_n}{n^3} &= 8 \zeta(3),\end{align}</math> where <math>(t_n)_{n\geq0}</math> is the <math>n^{\rm th}</math> term of the Thue-Morse sequence. In fact, for all <math>s</math> with real part greater than <math>1</math>, we have :<math> (2^s+1) \sum_{n\geq1} \frac{t_{n-1}}{n^s} + (2^s-1) \sum_{n\geq1} \frac{t_{n}}{n^s} = 2^s \zeta(s).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)