Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Scale-invariant feature transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Keypoint descriptor === Previous steps found keypoint locations at particular scales and assigned orientations to them. This ensured invariance to image location, scale and rotation. Now we want to compute a descriptor vector for each keypoint such that the descriptor is highly distinctive and partially invariant to the remaining variations such as illumination, 3D viewpoint, etc. This step is performed on the image closest in scale to the keypoint's scale. First a set of orientation histograms is created on 4Γ4 pixel neighborhoods with 8 bins each. These histograms are computed from magnitude and orientation values of samples in a 16Γ16 region around the keypoint such that each histogram contains samples from a 4Γ4 subregion of the original neighborhood region. The image gradient magnitudes and orientations are sampled around the keypoint location, using the scale of the keypoint to select the level of Gaussian blur for the image. In order to achieve orientation invariance, the coordinates of the descriptor and the gradient orientations are rotated relative to the keypoint orientation. The magnitudes are further weighted by a Gaussian function with <math>\sigma</math> equal to one half the width of the descriptor window. The descriptor then becomes a vector of all the values of these histograms. Since there are 4 Γ 4 = 16 histograms each with 8 bins the vector has 128 elements. This vector is then normalized to unit length in order to enhance invariance to affine changes in illumination. To reduce the effects of non-linear illumination a threshold of 0.2 is applied and the vector is again normalized. The thresholding process, also referred to as clamping, can improve matching results even when non-linear illumination effects are not present.<ref name=":0">Kirchner, Matthew R. "[https://arxiv.org/abs/1811.03173 Automatic thresholding of SIFT descriptors]." In ''Image Processing (ICIP), 2016 IEEE International Conference on'', pp. 291-295. IEEE, 2016.</ref> The threshold of 0.2 was empirically chosen, and by replacing the fixed threshold with one systematically calculated, matching results can be improved.<ref name=":0" /> Although the dimension of the descriptor, i.e. 128, seems high, descriptors with lower dimension than this don't perform as well across the range of matching tasks<ref name="Lowe2004" /> and the computational cost remains low due to the approximate BBF (see below) method used for finding the nearest neighbor. Longer descriptors continue to do better but not by much and there is an additional danger of increased sensitivity to distortion and occlusion. It is also shown that feature matching accuracy is above 50% for viewpoint changes of up to 50 degrees. Therefore, SIFT descriptors are invariant to minor affine changes. To test the distinctiveness of the SIFT descriptors, matching accuracy is also measured against varying number of keypoints in the testing database, and it is shown that matching accuracy decreases only very slightly for very large database sizes, thus indicating that SIFT features are highly distinctive.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)