Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Simple Lie group
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Split === {{See also|Split Lie algebra}} {{sort-under}} {| class="wikitable sortable sort-under" |- ! ! Dimension ! {{verth|va=middle|Real rank}} ! Maximal compact<br>subgroup ! Fundamental<br>group ! class="unsortable" | Outer auto­morphism<br>group ! class="unsortable" | Other names ! {{verth|va=middle|Dimension of<br>symmetric space}} ! class="unsortable" | Compact<br>symmetric space ! class="unsortable" | Non-Compact<br>symmetric space ! class="unsortable" | Remarks |- ! {{verth|va=middle|''A''<sub>''n''</sub> I (''n'' ≥ 1) split}} | ''n''(''n'' + 2) | ''n'' | ''D''<sub>''n''/2</sub> or ''B''<sub>(''n''−1)/2</sub> | Infinite cyclic if ''n'' = 1<br>2 if ''n'' ≥ 2 | 1 if ''n'' = 1<br>2 if ''n'' ≥ 2. | '''[[projective special linear group]]'''<br>PSL<sub>''n''+1</sub>(R) | {{math|{{sfrac|''n''(''n'' + 3)|2}}}} | Real structures on ''C''<sup>''n''+1</sup> or set of RP<sup>''n''</sup> in CP<sup>''n''</sup>. Hermitian if {{math|1=''n'' = 1}}, in which case it is the 2-sphere. | Euclidean structures on ''R''<sup>''n''+1</sup>. Hermitian if {{math|1=''n'' = 1}}, when it is the upper half plane or unit complex disc. | |- ! {{verth|va=middle|''B''<sub>''n''</sub> I (''n'' ≥ 2) split}} | ''n''(2''n'' + 1) | ''n'' | SO(''n'')SO(''n''+1) | Non-cyclic, order 4 | 1 | identity component of '''[[indefinite orthogonal group|special orthogonal group]]'''<br>SO(''n'',''n''+1) | {{math|''n''(''n'' + 1)}} | | | ''B''<sub>1</sub> is the same as ''A''<sub>1</sub>. |- ! {{verth|va=middle|''C''<sub>''n''</sub> I (''n'' ≥ 3) split}} | ''n''(2''n'' + 1) | ''n'' | ''A''<sub>''n''−1</sub>''S''<sup>1</sup> | Infinite cyclic | 1 | '''projective [[symplectic group]]'''<br>PSp<sub>2''n''</sub>(''R''), PSp(2''n'',''R''), PSp(2''n''), PSp(''n'',''R''), PSp(''n'') | {{math|''n''(''n'' + 1)}} | Hermitian. Complex structures of ''H''<sup>''n''</sup>. Copies of complex projective space in quaternionic projective space. | Hermitian. Complex structures on ''R''<sup>2''n''</sup> compatible with a symplectic form. Set of complex hyperbolic spaces in quaternionic hyperbolic space. Siegel upper half space. | ''C''<sub>2</sub> is the same as ''B''<sub>2</sub>, and ''C''<sub>1</sub> is the same as ''B''<sub>1</sub> and ''A''<sub>1</sub>. |- ! {{verth|va=middle|''D''<sub>''n''</sub> I (''n'' ≥ 4) split}} | ''n''(2''n'' − 1) | ''n'' | SO(''n'')SO(''n'') | Order 4 if ''n'' odd,<br/>8 if ''n'' even | 2 if {{math|''n'' > 4}},<br/>''S''<sub>3</sub> if {{math|1=''n'' = 4}} | identity component of '''projective [[indefinite orthogonal group|special orthogonal group]]'''<br>PSO(''n'',''n'') | ''n''<sup>2</sup> | | | ''D''<sub>3</sub> is the same as ''A''<sub>3</sub>, ''D''<sub>2</sub> is the same as ''A''<sub>1</sub><sup>2</sup>, and ''D''<sub>1</sub> is abelian. |- ! {{verth|va=middle|''E''<sub>6</sub><sup>6</sup> I split}} | 78 | 6 | ''C''<sub>4</sub> | Order 2 | Order 2 | E I | 42 | | | |- ! {{verth|va=middle|''E''<sub>7</sub><sup>7</sup> V split}} | 133 | 7 | ''A''<sub>7</sub> | Cyclic, order 4 | Order 2 | | 70 | | | |- ! {{verth|va=middle|''E''<sub>8</sub><sup>8</sup> VIII split}} | 248 | 8 | ''D''<sub>8</sub> | 2 | 1 | E VIII | 128 | | | @ [[E8 (mathematics)|E8]] |- ! {{verth|va=middle|''F''<sub>4</sub><sup>4</sup> I split}} | 52 | 4 | ''C''<sub>3</sub> × ''A''<sub>1</sub> | Order 2 | 1 | F I | 28 | Quaternionic projective planes in Cayley projective plane. | Hyperbolic quaternionic projective planes in hyperbolic Cayley projective plane. | |- ! {{verth|va=middle|''G''<sub>2</sub><sup>2</sup> I split}} | 14 | 2 | ''A''<sub>1</sub> × ''A''<sub>1</sub> | Order 2 | 1 | G I | 8 | Quaternionic subalgebras of the Cayley algebra. Quaternion-Kähler. | Non-division quaternionic subalgebras of the non-division Cayley algebra. Quaternion-Kähler. | |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)