Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Standard Model
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Strong nuclear force === {{See also|Strong interaction|Nuclear force|Quantum chromodynamics}} The strong nuclear force is responsible for hadronic and [[Nuclear binding energy|nuclear binding]]. It is mediated by gluons, which couple to color charge. Since gluons themselves have color charge, the strong force exhibits [[Color confinement|confinement]] and [[asymptotic freedom]]. Confinement means that only color-neutral particles can exist in isolation, therefore quarks can only exist in hadrons and never in isolation, at low energies. Asymptotic freedom means that the strong force becomes weaker, as the energy scale increases. The strong force overpowers the [[electrostatic]] repulsion of protons and quarks in nuclei and hadrons respectively, at their respective scales. While quarks are bound in hadrons by the fundamental strong interaction, which is mediated by gluons, nucleons are bound by an emergent phenomenon termed the ''residual strong force'' or ''[[nuclear force]]''. This interaction is mediated by mesons, such as the [[pion]]. The color charges inside the nucleon cancel out, meaning most of the gluon and quark fields cancel out outside of the nucleon. However, some residue is "leaked", which appears as the exchange of virtual mesons, that causes the attractive force between nucleons. The (fundamental) strong interaction is described by quantum chromodynamics, which is a component of the Standard Model.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)