Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Theta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Modulus dependent theorems=== In combination with the elliptic modulus, the following formulas can be displayed: These are the formulas for the square of the elliptic nome: :<math>\theta_{4}[q(k)] = \theta_{4}[q(k)^2]\sqrt[8]{1 - k^2}</math> :<math>\theta_{4}[q(k)^2] = \theta_{3}[q(k)]\sqrt[8]{1 - k^2}</math> :<math>\theta_{3}[q(k)^2] = \theta_{3}[q(k)]\cos[\tfrac{1}{2}\arcsin(k)]</math> And this is an efficient formula for the cube of the nome: :<math> \theta_{4}\biggl\langle q\bigl\{\tan\bigl[\tfrac{1}{2}\arctan(t^3)\bigr]\bigr\}^3 \biggr\rangle = \theta_{4}\biggl\langle q\bigl\{\tan\bigl[\tfrac{1}{2}\arctan(t^3)\bigr]\bigr\} \biggr\rangle \,3^{-1/2} \bigl(\sqrt{2\sqrt{t^4 - t^2 + 1} - t^2 + 2} + \sqrt{t^2 + 1}\,\bigr)^{1/2} </math> For all real values <math> t \in \R </math> the now mentioned formula is valid. And for this formula two examples shall be given: First calculation example with the value <math> t = 1 </math> inserted: :{| class="wikitable" | <math> \theta_{4}\biggl\langle q\bigl\{\tan\bigl[\tfrac{1}{2}\arctan(1)\bigr]\bigr\}^3 \biggr\rangle = \theta_{4}\biggl\langle q\bigl\{\tan\bigl[\tfrac{1}{2}\arctan(1)\bigr]\bigr\} \biggr\rangle \,3^{-1/2} \bigl(\sqrt{3} + \sqrt{2}\,\bigr)^{1/2} </math> |- | <math> \theta_{4}\bigl[\exp(-3\sqrt{2}\,\pi)\bigr] = \theta_{4}\bigl[\exp(-\sqrt{2}\,\pi)\bigr] \,3^{-1/2} \bigl(\sqrt{3} + \sqrt{2}\,\bigr)^{1/2} </math> |} Second calculation example with the value <math> t = \Phi^{-2} </math> inserted: :{| class="wikitable" | <math> \theta_{4}\biggl\langle q\bigl\{\tan\bigl[\tfrac{1}{2}\arctan(\Phi^{-6})\bigr]\bigr\}^3 \biggr\rangle = \theta_{4}\biggl\langle q\bigl\{\tan\bigl[\tfrac{1}{2}\arctan(\Phi^{-6})\bigr]\bigr\} \biggr\rangle \,3^{-1/2} \bigl(\sqrt{2\sqrt{\Phi^{-8} - \Phi^{-4} + 1} - \Phi^{-4} + 2} + \sqrt{\Phi^{-4} + 1}\,\bigr)^{1/2} </math> |- | <math> \theta_{4}\bigl[\exp(-3\sqrt{10}\,\pi)\bigr] = \theta_{4}\bigl[\exp(-\sqrt{10}\,\pi)\bigr] \,3^{-1/2} \bigl(\sqrt{2\sqrt{\Phi^{-8} - \Phi^{-4} + 1} - \Phi^{-4} + 2} + \sqrt{\Phi^{-4} + 1}\,\bigr)^{1/2} </math> |} The constant <math> \Phi </math> represents the [[Golden ratio]] number <math> \Phi = \tfrac{1}{2}(\sqrt{5} + 1)</math> exactly.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)