Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Time–frequency analysis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Electromagnetic wave propagation=== We can represent an electromagnetic wave in the form of a 2 by 1 matrix : <math>\begin{bmatrix} x \\ y \end{bmatrix},</math> which is similar to the time–frequency plane. When electromagnetic wave propagates through free-space, the [[Fresnel diffraction]] occurs. We can operate with the 2 by 1 matrix : <math>\begin{bmatrix} x \\ y \end{bmatrix}</math> by [[Linear canonical transformation#Electromagnetic wave propagation|LCT]] with parameter matrix : <math>\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & \lambda z \\ 0 & 1 \end{bmatrix}, </math> where ''z'' is the propagation distance and <math>\lambda </math> is the wavelength. When electromagnetic wave pass through a spherical lens or be reflected by a disk, the parameter matrix should be : <math>\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{\lambda f} & 1 \end{bmatrix} </math> and : <math>\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \frac{1}{\lambda R} & 1 \end{bmatrix} </math> respectively, where ƒ is the focal length of the lens and ''R'' is the radius of the disk. These corresponding results can be obtained from : <math>\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}. </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)