Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
WKB approximation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Bound states for 1 rigid wall === The potential of such systems can be given in the form: <math>V(x) = \begin{cases} V(x) & \text{if } x \geq x_1\\ \infty & \text{if } x < x_1 \\ \end{cases}</math> where <math display="inline">x_1 < x_2 </math>. Finding wavefunction in bound region, ie. within classical turning points <math display="inline">x_1 </math> and <math display="inline">x_2 </math>, by considering approximations far from <math display="inline">x_1 </math> and <math display="inline">x_2 </math> respectively we have two solutions: <math>\Psi_{\text{WKB}}(x) = \frac{A}{\sqrt{|p(x)|}}\sin{\left(\frac 1 \hbar \int_{x}^{x_1} |p(x)| dx +\alpha \right)} </math> <math>\Psi_{\text{WKB}}(x) = \frac{B}{\sqrt{|p(x)|}}\cos{\left(\frac 1 \hbar \int_{x}^{x_2} |p(x)| dx +\beta \right)} </math> Since wavefunction must vanish near <math display="inline">x_1 </math>, we conclude <math display="inline">\alpha = 0 </math>. For airy functions near <math display="inline">x_2 </math>, we require <math display="inline">\beta = - \frac \pi 4 </math>. We require that angles within these functions have a phase difference <math>\pi(n+1/2)</math> where the <math>\frac \pi 2</math> phase difference accounts for changing sine to cosine and <math>n \pi</math> allowing <math>B= (-1)^n A </math>. <math display="block">\frac 1 \hbar \int_{x_1}^{x_2} |p(x)| dx = \pi \left(n + \frac 3 4\right) </math>Where ''n'' is a non-negative integer.<ref name=":1" /> Note that the right hand side of this would instead be <math>\pi(n-1/4)</math> if n was only allowed to non-zero natural numbers. Thus we conclude that, for <math display="inline">n = 1,2,3,\cdots </math><math display="block">\int_{x_1}^{x_2} \sqrt{2m \left( E-V(x)\right)}\,dx = \left(n-\frac 1 4\right)\pi \hbar </math>In 3 dimensions with spherically symmetry, the same condition holds where the position x is replaced by radial distance r, due to its similarity with this problem.<ref>{{Cite book |last=Weinberg |first=Steven |url=http://dx.doi.org/10.1017/cbo9781316276105 |title=Lectures on Quantum Mechanics |date=2015-09-10 |publisher=Cambridge University Press |isbn=978-1-107-11166-0 |edition=2nd |pages=204|doi=10.1017/cbo9781316276105 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)