Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Wiener process
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Qualitative properties ==== * For every ε > 0, the function ''w'' takes both (strictly) positive and (strictly) negative values on (0, ε). * The function ''w'' is continuous everywhere but differentiable nowhere (like the [[Weierstrass function]]). * For any <math>\epsilon > 0</math>, <math>w(t)</math> is almost surely not <math>(\tfrac 1 2 + \epsilon)</math>-[[Hölder continuous]], and almost surely <math>(\tfrac 1 2 - \epsilon)</math>-Hölder continuous.<ref>{{Cite book |last1=Mörters |first1=Peter |title=Brownian motion |last2=Peres |first2=Yuval |last3=Schramm |first3=Oded |last4=Werner |first4=Wendelin |date=2010 |publisher=Cambridge University Press |isbn=978-0-521-76018-8 |series=Cambridge series in statistical and probabilistic mathematics |location=Cambridge |pages=18}}</ref> * Points of [[Maxima and minima|local maximum]] of the function ''w'' are a dense countable set; the maximum values are pairwise different; each local maximum is sharp in the following sense: if ''w'' has a local maximum at {{mvar|t}} then <math display="block">\lim_{s \to t} \frac{|w(s)-w(t)|}{|s-t|} \to \infty.</math> The same holds for local minima. * The function ''w'' has no points of local increase, that is, no ''t'' > 0 satisfies the following for some ε in (0, ''t''): first, ''w''(''s'') ≤ ''w''(''t'') for all ''s'' in (''t'' − ε, ''t''), and second, ''w''(''s'') ≥ ''w''(''t'') for all ''s'' in (''t'', ''t'' + ε). (Local increase is a weaker condition than that ''w'' is increasing on (''t'' − ''ε'', ''t'' + ''ε'').) The same holds for local decrease. * The function ''w'' is of [[bounded variation|unbounded variation]] on every interval. * The [[quadratic variation]] of ''w'' over [0,''t''] is ''t''. * [[root of a function|Zeros]] of the function ''w'' are a [[nowhere dense set|nowhere dense]] [[perfect set]] of Lebesgue measure 0 and [[Hausdorff dimension]] 1/2 (therefore, uncountable).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)