Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Animal echolocation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Whale evolution ==== [[Cetacea]]n evolution consisted of three main [[Evolutionary radiation|radiations]]. Throughout the middle and late [[Eocene]] periods (49-31.5 million years ago), [[archaeocete]]s, primitive toothed Cetacea that arose from terrestrial mammals, were the only cetaceans.<ref name="Gatesy Geisler Chang 2012">{{cite journal |last1=Gatesy |first1=John |last2=Geisler |first2=Jonathan H. |last3=Chang |first3=Joseph |author4=Buell, Carl |author5=Berta, Annalisa |author6=Meredith, Robert W. |author7=Springer, Mark S. |author8=McGowen, Michael R. |display-authors=3 |year=2012 |title=A phylogenetic blueprint for a modern whale |journal=[[Molecular Phylogenetics and Evolution]] |volume=66 |issue=2 |pages=479β506 |doi=10.1016/j.ympev.2012.10.012 |pmid=23103570}}</ref><ref name="Fordyce 1980">{{cite journal |last1=Fordyce |first1=R. E. |year=1980 |title=Whale evolution and oligocene southern-ocean environments | journal= Palaeogeography, Palaeoclimatology, Palaeoecology |volume=31 |pages=319β336 |doi=10.1016/0031-0182(80)90024-3 |bibcode=1980PPP....31..319F |doi-access=free }}</ref> They did not echolocate, but had slightly adapted underwater hearing.<ref name="Fordyce 2003">{{cite book |last=Fordyce |first=R. E. |year=2003 |chapter=Cetacean Evolution and Eocene-Oligocene oceans revisited |editor1=Prothero, Donald R. |editor2=Ivany, Linda C. |editor3=Nesbitt, Elizabeth A. |title=From Greenhouse to Icehouse: the Marine Eocene-Oligocene Transition |publisher=[[Columbia University Press]] |pages=154β170 |isbn=978-0-2311-2716-5}}</ref> By the late middle Eocene, acoustically isolated ear bones had evolved to give [[Basilosauridae|basilosaurid]] archaeocetes directional underwater hearing at low to mid frequencies.<ref name="Lindberg 2007">{{cite journal |last1=Lindberg |first1=D. R. |last2=Pyenson |first2=Nicholas D. |author2-link=Nicholas Pyenson |year=2007 |title=Things that go bump in the night: evolutionary interactions between cephalopods and cetaceans in the tertiary |journal=Lethaia |volume=40 |issue=4 | pages=335β343 |doi=10.1111/j.1502-3931.2007.00032.x|bibcode=2007Letha..40..335L }}</ref> With the extinction of archaeocetes at the onset of the [[Oligocene]] (33.9β23 million years ago), two new lineages evolved in a second radiation. Early mysticetes (baleen whales) and odontocetes appeared in the middle Oligocene in New Zealand.<ref name="Fordyce 1980"/> Extant odontocetes are [[monophyletic]] (a single evolutionary group), but echolocation evolved twice, convergently: once in ''[[Xenorophus]]'', an Oligocene [[Stem-group|stem]] odontocete, and once in the [[crown group|crown]] odontocetes.<ref name="Racicot 2019">{{cite journal |last1=Racicot |first1=Rachel A. |last2=Boessenecker |first2=Robert W. |last3=Darroch |first3=Simon A. F. |last4=Geisler |first4=Jonathan H. |year=2019 |title=Evidence for convergent evolution of ultrasonic hearing in toothed whales |journal=Biology Letters |volume=15 |issue=5 |pages=20190083 |doi=10.1098/rsbl.2019.0083 |pmid=31088283 |s2cid=155091623 |pmc=6548736 }}</ref> {{clade |label1=<!--<ref name="Gatesy Geisler Chang 2012"/>--> |1={{clade |label1=[[Cetacea]] |1={{clade |label2='''''directional u/water hearing''''' |sublabel2=''mid/late [[Eocene]]'' |2=[[Basilosauridae]] β |1={{clade |label1=[[Odontoceti]] |sublabel1=''[[Oligocene]]'' |1={{clade |label1='''''echolocation''''' |sublabel1=''late [[Oligocene]]'' |1=''[[Xenorophus]]'' β |label2='''''echolocation''''' |2={{clade |1=[[Physeteroidea]] |2={{clade |1=[[Ziphiidae]], etc. |label2=''adaptive radiation'' |sublabel2=''[[Miocene]]'' |2=[[Delphinoidea]] }} }} }} |label2='''''echolocation''''' |sublabel2=''middle [[Oligocene]]'' |2=[[Mysticeti]] }} }} }} }} {| style="font-size: 10px; background: whitesmoke; float:right;" |+ style="font-size:12px;" | '''Cetacean evolution timeline'''<ref name="Fordyce 1980"/> |- style="background:lightgray;" ! scope="col" style="width: 50px;" | Epoch ! scope="col" style="width: 55px;" | Start date ! scope="col" style="width: 100px;" | Event |- | [[Miocene]] || 23 [[Myr|mya]] || [[Adaptive radiation]], esp. of dolphins |- | [[Oligocene]] || 34 mya || [[Odontocetes]] echolocation |- | [[Eocene]] || 49 mya || [[Archaeoceti|Archaeocetes]] underwater hearing |} Physical restructuring of the oceans has played a role in the evolution of echolocation. Global cooling at the [[Eocene-Oligocene boundary]] caused a change from a [[Greenhouse and icehouse Earth|greenhouse to an icehouse world]]. Tectonic openings created the [[Southern Ocean]] with a free flowing [[Antarctic Circumpolar Current]].<!--<ref name="Fordyce 1980"/>--><ref name="Fordyce 2003"/><ref name="Lindberg 2007"/><ref name="Steeman_2009">{{cite journal |last1=Steeman |first1=Mette E. |last2=Hebsgaard |first2=Martin B. |last3=Fordyce |first3=R. Ewan |last4=Ho |first4=Simon Y. W. |last5=Rabosky |first5=Daniel L. |last6=Nielsen |first6=Rasmus |last7=Rahbek |first7=Carsten |last8=Glenner |first8=Henrik |last9=SΓΈrensen |first9=Martin V. |last10=Willerslev |first10=Eske |display-authors=3 |title=Radiation of extant cetaceans driven by restructuring of the oceans |journal=Systematic Biology |volume=58 |issue=6 |pages=573β585 |date=December 2009 |pmid=20525610 |pmc=2777972 |doi=10.1093/sysbio/syp060 }}</ref> These events encouraged selection for the ability to locate and capture prey in turbid river waters, which enabled the odontocetes to invade and feed at depths below the [[photic zone]]. In particular, echolocation below the photic zone could have been a predation adaptation to [[Diel vertical migration|diel migrating]] [[cephalopods]].<ref name="Lindberg 2007"/><ref>{{cite journal |last1=Fordyce |first1=R. Ewan |last2=Barnes |first2=Lawrence G. |year=1994 |title=The evolutionary history of whales and dolphins | journal=Annual Review of Earth and Planetary Sciences |volume=22 |issue=1 | pages=419β455 |doi=10.1146/annurev.ea.22.050194.002223 | bibcode=1994AREPS..22..419F }}</ref> The family [[Delphinidae]] (dolphins) diversified in the [[Neogene]] (23β2.6 million years ago), evolving extremely specialized echolocation.<ref>{{cite journal | last1=McGowen |first1=Michael R. |last2=Spaulding |first2=Michelle |last3=Gatesy |first3=John |title=Divergence date estimation and a comprehensive molecular tree of extant cetaceans |journal=Molecular Phylogenetics and Evolution |volume=53 |issue=3 |pages=891β906 |date=December 2009 |pmid=19699809 |doi=10.1016/j.ympev.2009.08.018 }}</ref><ref name="Fordyce 2003"/> Four proteins play a major role in toothed whale echolocation. [[Prestin]], a motor protein of the outer hair cells of the inner ear of the mammalian [[cochlea]], is associated with hearing sensitivity.<ref name="Liu Rossiter Xiuqun 2010">{{cite journal | last1=Liu |first1=Yang |last2=Rossiter |first2=Stephen J. |last3=Han |first3=Xiuqun |last4=Cotton |first4=James A. |last5=Zhang |first5=Shuyi |title=Cetaceans on a molecular fast track to ultrasonic hearing |journal=Current Biology |volume=20 |issue=20 |pages=1834β1839 |date=October 2010 |pmid=20933423 |doi=10.1016/j.cub.2010.09.008 |doi-access=free |bibcode=2010CBio...20.1834L }}</ref> It has undergone two clear episodes of accelerated evolution in cetaceans.<ref name="Liu Rossiter Xiuqun 2010"/> The first is connected to odontocete divergence, when echolocation first developed, and the second with the increase in echolocation frequency among dolphins. [[TMC1|Tmc1]] and Pjvk are proteins related to hearing sensitivity: Tmc1 is associated with hair cell development and high-frequency hearing, and Pjvk with hair cell function.<ref name="Davies Cotton Kirwan 2012">{{Cite journal |last1=Davies |first1=K. T. J. |last2=Cotton |first2=J. A. |last3=Kirwan |first3=J. D. |last4=Teeling |first4=E. C. |last5=Rossiter |first5=S. J. |date=May 2012 |title=Parallel signatures of sequence evolution among hearing genes in echolocating mammals: an emerging model of genetic convergence |journal=Heredity |volume=108 |issue=5 |pages=480β489 |doi=10.1038/hdy.2011.119 |issn=1365-2540 |pmc=3330687 |pmid=22167055}}</ref> [[Molecular evolution]] of Tmc1 and Pjvk indicates positive selection for echolocation in odontocetes.<ref name="Davies Cotton Kirwan 2012"/> [[CLDN14|Cldn14]], a member of the tight junction proteins which form barriers between inner ear cells, shows the same evolutionary pattern as Prestin.<ref>{{cite journal | last1=Xu |first1=Huihui |last2=Liu |first2=Yang |last3=He |first3=Guimei |last4=Rossiter |first4=Stephen J. |last5=Zhang |first5=Shuyi |title=Adaptive evolution of tight junction protein claudin-14 in echolocating whales |journal=Gene |volume=530 |issue=2 |pages=208β214 |date=November 2013 |pmid=23965379 |doi=10.1016/j.gene.2013.08.034 }}</ref> The two events of protein evolution, for Prestin and Cldn14, occurred at the same times as the tectonic opening of the [[Drake Passage]] (34β31 Ma) and Antarctic ice growth at the Middle [[Miocene]] climate transition (14 Ma), with the divergence of odontocetes and mysticetes occurring with the former, and the speciation of Delphinidae with the latter.<ref name="Steeman_2009"/> The evolution of two cranial structures may be linked to echolocation. Cranial telescoping (overlap between [[Frontal bone|frontal]] and [[maxilla]]ry bones, and rearwards displacement of the nostrils<ref name="Roston Roth 2019">{{cite journal | last1=Roston | first1=Rachel A. | last2=Roth | first2=V. Louise | title=Cetacean Skull Telescoping Brings Evolution of Cranial Sutures into Focus | journal=The Anatomical Record | publisher=Wiley | volume=302 | issue=7 | date=8 March 2019 | issn=1932-8486 | doi=10.1002/ar.24079 | pages=1055β1073| pmid=30737886 | pmc=9324554 }}</ref>) developed first in [[Xenorophidae|xenorophids]]. It evolved further in stem odontocetes, arriving at full cranial telescoping in the crown odontocetes.<ref name="Churchill Geisler Beatty 2018">{{Cite journal |last1=Churchill |first1=Morgan |last2=Geisler |first2=Jonathan H. |last3=Beatty |first3=Brian L. |last4=Goswami |first4=Anjali |date=2018 |title=Evolution of cranial telescoping in echolocating whales (Cetacea: Odontoceti) |url=https://onlinelibrary.wiley.com/doi/abs/10.1111/evo.13480 |journal=Evolution |volume=72 |issue=5 |pages=1092β1108 |doi=10.1111/evo.13480 |pmid=29624668 |s2cid=4656605 |issn=1558-5646|url-access=subscription }}</ref> Movement of the nostrils may have allowed for a larger nasal apparatus and [[Melon (cetacean)|melon]] for echolocation.<ref name="Churchill Geisler Beatty 2018"/> This change occurred after the divergence of the neocetes from the basilosaurids.<ref name="Coombs Clavel Park 2020">{{Cite journal |last1=Coombs |first1=Ellen J. |last2=Clavel |first2=Julien |last3=Park |first3=Travis |last4=Churchill |first4=Morgan |last5=Goswami |first5=Anjali |date=2020-07-10 |title=Wonky whales: the evolution of cranial asymmetry in cetaceans |journal=BMC Biology |volume=18 |issue=1 |page=86 |doi=10.1186/s12915-020-00805-4 |issn=1741-7007 |pmc=7350770 |pmid=32646447 |doi-access=free }}</ref> The first shift towards cranial asymmetry occurred in the Early Oligocene, prior to the xenorophids.<ref name="Coombs Clavel Park 2020"/> A xenorophid fossil (''Cotylocara macei'') has cranial asymmetry, and shows other indicators of echolocation.<ref name="Geisler Colbert Carew 2014">{{Cite journal |last1=Geisler |first1=Jonathan H. |last2=Colbert |first2=Matthew W. |last3=Carew |first3=James L. |date=April 2014 |title=A new fossil species supports an early origin for toothed whale echolocation |url=https://www.nature.com/articles/nature13086 |journal=Nature |volume=508 |issue=7496 |pages=383β386 |doi=10.1038/nature13086 |pmid=24670659 |bibcode=2014Natur.508..383G |s2cid=4457391 |issn=1476-4687|url-access=subscription }}</ref> However, basal xenorophids lack cranial asymmetry, indicating that this likely evolved twice.<ref name="Coombs Clavel Park 2020"/> Extant odontocetes have asymmetric nasofacial regions; generally, the [[median plane]] is shifted to the left and structures on the right are larger.<ref name="Geisler Colbert Carew 2014"/> Both cranial telescoping and asymmetry likely relate to sound production for echolocation.<ref name="Churchill Geisler Beatty 2018"/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)