Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
BCH code
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Explanation of Forney algorithm computation ==== It is based on [[Lagrange polynomial|Lagrange interpolation]] and techniques of [[generating function]]s. Consider <math>S(x)\Lambda(x),</math> and for the sake of simplicity suppose <math>\lambda_k = 0</math> for <math>k > v,</math> and <math>s_k = 0</math> for <math>k > c + d - 2.</math> Then :<math>S(x)\Lambda(x) = \sum_{j=0}^{\infty}\sum_{i=0}^j s_{j-i+1}\lambda_i x^j.</math> :<math>\begin{align} S(x)\Lambda(x) &= S(x) \left \{ \lambda_0\prod_{\ell=1}^v \left (\alpha^{i_\ell}x-1 \right ) \right \} \\ &= \left \{ \sum_{i=0}^{d-2}\sum_{j=1}^v e_j\alpha^{(c+i)\cdot i_j} x^i \right \} \left \{ \lambda_0\prod_{\ell=1}^v \left (\alpha^{i_\ell}x-1 \right ) \right \} \\ &= \left \{ \sum_{j=1}^v e_j \alpha^{c i_j}\sum_{i=0}^{d-2} \left (\alpha^{i_j} \right )^i x^i \right \} \left \{ \lambda_0\prod_{\ell=1}^v \left (\alpha^{i_\ell}x-1 \right ) \right \} \\ &= \left \{ \sum_{j=1}^v e_j \alpha^{c i_j} \frac{\left (x \alpha^{i_j} \right )^{d-1}-1}{x \alpha^{i_j}-1} \right \} \left \{ \lambda_0 \prod_{\ell=1}^v \left (\alpha^{i_\ell}x-1 \right ) \right \} \\ &= \lambda_0 \sum_{j=1}^v e_j\alpha^{c i_j} \frac{ \left (x\alpha^{i_j} \right)^{d-1}-1}{x\alpha^{i_j}-1} \prod_{\ell=1}^v \left (\alpha^{i_\ell}x-1 \right ) \\ &= \lambda_0 \sum_{j=1}^v e_j\alpha^{c i_j} \left ( \left (x\alpha^{i_j} \right)^{d-1}-1 \right ) \prod_{\ell\in\{1,\cdots,v\}\setminus\{j\}} \left (\alpha^{i_\ell}x-1 \right ) \end{align}</math> We want to compute unknowns <math>e_j,</math> and we could simplify the context by removing the <math>\left(x\alpha^{i_j}\right)^{d-1}</math> terms. This leads to the error evaluator polynomial :<math>\Omega(x) \equiv S(x) \Lambda(x) \bmod{x^{d-1}}.</math> Thanks to <math>v\leqslant d-1</math> we have :<math>\Omega(x) = -\lambda_0\sum_{j=1}^v e_j\alpha^{c i_j} \prod_{\ell\in\{1,\cdots,v\}\setminus\{j\}} \left(\alpha^{i_\ell}x - 1\right).</math> Thanks to <math>\Lambda</math> (the Lagrange interpolation trick) the sum degenerates to only one summand for <math>x = \alpha^{-i_k}</math> :<math>\Omega \left(\alpha^{-i_k}\right) = -\lambda_0 e_k\alpha^{c\cdot i_k}\prod_{\ell\in\{1,\cdots,v\}\setminus\{k\}} \left(\alpha^{i_\ell}\alpha^{-i_k} - 1\right).</math> To get <math>e_k</math> we just should get rid of the product. We could compute the product directly from already computed roots <math>\alpha^{-i_j}</math> of <math>\Lambda,</math> but we could use simpler form. As [[formal derivative]] :<math>\Lambda'(x) = \lambda_0\sum_{j=1}^v \alpha^{i_j}\prod_{\ell\in\{1,\cdots,v\}\setminus\{j\}} \left(\alpha^{i_\ell}x - 1\right),</math> we get again only one summand in :<math>\Lambda'\left(\alpha^{-i_k}\right) = \lambda_0\alpha^{i_k}\prod_{\ell\in\{1,\cdots,v\}\setminus\{k\}} \left(\alpha^{i_\ell}\alpha^{-i_k} - 1\right).</math> So finally :<math>e_k = -\frac{\alpha^{i_k}\Omega \left(\alpha^{-i_k}\right)}{\alpha^{c\cdot i_k}\Lambda' \left(\alpha^{-i_k}\right)}.</math> This formula is advantageous when one computes the formal derivative of <math>\Lambda</math> form :<math>\Lambda(x) = \sum_{i=1}^v \lambda_i x^i</math> yielding: :<math>\Lambda'(x) = \sum_{i=1}^v i \cdot \lambda_i x^{i-1},</math> where :<math>i\cdot x := \sum_{k=1}^i x.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)