Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bayesian network
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Causal networks=== Although Bayesian networks are often used to represent [[causality|causal]] relationships, this need not be the case: a directed edge from ''u'' to ''v'' does not require that ''X<sub>v</sub>'' be causally dependent on ''X<sub>u</sub>''. This is demonstrated by the fact that Bayesian networks on the graphs: :<math> a \rightarrow b \rightarrow c \qquad \text{and} \qquad a \leftarrow b \leftarrow c </math> are equivalent: that is they impose exactly the same conditional independence requirements. A causal network is a Bayesian network with the requirement that the relationships be causal. The additional semantics of causal networks specify that if a node ''X'' is actively caused to be in a given state ''x'' (an action written as do(''X'' = ''x'')), then the probability density function changes to that of the network obtained by cutting the links from the parents of ''X'' to ''X'', and setting ''X'' to the caused value ''x''.<ref name=pearl2000/> Using these semantics, the impact of external interventions from data obtained prior to intervention can be predicted.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)