Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Binomial theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==History== Special cases of the binomial theorem were known since at least the 4th century BC when [[Greek mathematics|Greek mathematician]] [[Euclid]] mentioned the special case of the binomial theorem for exponent <math>n=2</math>.<ref name="Coolidge">{{cite journal|title=The Story of the Binomial Theorem|first=J. L.|last=Coolidge|journal=The American Mathematical Monthly| volume=56| issue=3|date=1949|pages=147–157|doi=10.2307/2305028|jstor = 2305028}}</ref> Greek mathematician [[Diophantus]] cubed various binomials, including <math>x-1</math>.<ref name="Coolidge" /> Indian mathematician [[Aryabhata]]'s method for finding cube roots, from around 510 AD, suggests that he knew the binomial formula for exponent <math>n=3</math>.<ref name="Coolidge" /> Binomial coefficients, as combinatorial quantities expressing the number of ways of selecting {{mvar|k}} objects out of {{mvar|n}} without replacement ([[combinations]]), were of interest to ancient Indian mathematicians. The [[Jainism|Jain]] ''[[Bhagavati Sutra]]'' (c. 300 BC) describes the number of combinations of philosophical categories, senses, or other things, with correct results up through {{tmath|1= n = 4}} (probably obtained by listing all possibilities and counting them)<ref name=biggs>{{cite journal |last=Biggs |first=Norman L. |author-link=Norman L. Biggs |title=The roots of combinatorics |journal=Historia Mathematica |volume=6 |date=1979 |issue=2 |pages=109–136 |doi=10.1016/0315-0860(79)90074-0 |doi-access=free}}</ref> and a suggestion that higher combinations could likewise be found.<ref>{{cite journal |last=Datta |first=Bibhutibhushan |author-link=Bibhutibhushan Datta |url=https://archive.org/details/in.ernet.dli.2015.165748/page/n139/ |title=The Jaina School of Mathematics |journal=Bulletin of the Calcutta Mathematical Society |volume=27 |year=1929 |at=5. 115–145 (esp. 133–134) }} Reprinted as "The Mathematical Achievements of the Jainas" in {{cite book|editor-last=Chattopadhyaya |editor-first=Debiprasad |title=Studies in the History of Science in India |volume=2 |place=New Delhi |publisher=Editorial Enterprises |year=1982 |pages=684–716}}</ref> The ''[[Chandaḥśāstra]]'' by the Indian lyricist [[Piṅgala]] (3rd or 2nd century BC) somewhat cryptically describes a method of arranging two types of syllables to form [[metre (poetry)|metre]]s of various lengths and counting them; as interpreted and elaborated by Piṅgala's 10th-century commentator [[Halāyudha]] his "method of pyramidal expansion" (''meru-prastāra'') for counting metres is equivalent to [[Pascal's triangle]].<ref>{{cite journal |last=Bag |first=Amulya Kumar |title=Binomial theorem in ancient India |journal=Indian Journal of History of Science |volume=1 |number=1 |year=1966 |pages=68–74 |url=http://repository.ias.ac.in/70374/1/10-pub.pdf }} {{pb}} {{cite journal |last=Shah |first=Jayant |year=2013 |journal=Gaṇita Bhāratī |volume=35 |number=1–4 |pages=43–96 |title=A History of Piṅgala's Combinatorics |id={{ResearchGatePub|353496244}} }} ([https://ia800306.us.archive.org/19/items/Pingala/Pingala.pdf Preprint]) {{pb}} Survey sources: {{pb}} {{cite book |last=Edwards |first=A. W. F. |author-link=A. W. F. Edwards |year=1987 |chapter=The combinatorial numbers in India |title=Pascal's Arithmetical Triangle |place=London |publisher=Charles Griffin |isbn=0-19-520546-4 |chapter-url=https://archive.org/details/pascalsarithmeti0000edwa/page/27 |pages=27–33 |chapter-url-access=limited }} {{pb}} {{cite book |last=Divakaran |first=P. P. |year=2018 |title=The Mathematics of India: Concepts, Methods, Connections |chapter=Combinatorics |at=§5.5 {{pgs|135–140}} |publisher=Springer; Hindustan Book Agency |doi=10.1007/978-981-13-1774-3_5 |isbn=978-981-13-1773-6 }} {{pb}} {{cite book |last=Roy |first=Ranjan |author-link=Ranjan Roy |year=2021 |title=Series and Products in the Development of Mathematics |edition=2 |volume=1 |publisher=Cambridge University Press |chapter=The Binomial Theorem |at=Ch. 4, {{pgs|77–104}} |isbn=978-1-108-70945-3 |doi=10.1017/9781108709453.005 }}</ref> [[Varāhamihira]] (6th century AD) describes another method for computing combination counts by adding numbers in columns.<ref name=gupta>{{cite journal |last=Gupta |first=Radha Charan |author-link=Radha Charan Gupta |title=Varāhamihira's Calculation of {{tmath|{}^nC_r}} and the Discovery of Pascal's Triangle |journal=Gaṇita Bhāratī |volume=14 |number=1–4 |year=1992 |pages=45–49 }} Reprinted in {{cite book |editor-last=Ramasubramanian |editor-first=K. |year=2019 |title=Gaṇitānanda |publisher=Springer |doi=10.1007/978-981-13-1229-8_29 |pages=285–289 }}</ref> By the 9th century at latest Indian mathematicians learned to express this as a product of fractions {{tmath| \tfrac{n}1 \times \tfrac{n - 1}2 \times \cdots \times \tfrac{n - k + 1}{n-k} }}, and clear statements of this rule can be found in [[Śrīdhara]]'s ''Pāṭīgaṇita'' (8th–9th century), [[Mahāvīra (mathematician)|Mahāvīra]]'s ''[[Gaṇita-sāra-saṅgraha]]'' (c. 850), and [[Bhāskara II]]'s ''Līlāvatī'' (12th century).{{r|gupta}}{{r|biggs}}<ref>{{cite book |year=1959|title=The Patiganita of Sridharacarya |editor-last=Shukla |editor-first=Kripa Shankar |editor-link= Kripa Shankar Shukla |publisher=Lucknow University |chapter-url=https://archive.org/details/Patiganita/page/n294/mode/1up |chapter=Combinations of Savours |at=Vyavahāras 1.9, {{pgs|97}} (text), {{pgs|58–59}} (translation) }}</ref> The Persian mathematician [[al-Karajī]] (953–1029) wrote a now-lost book containing the binomial theorem and a table of binomial coefficients, often credited as their first appearance.<ref name=yadegari>{{cite journal |last=Yadegari |first=Mohammad |year=1980 |title=The Binomial Theorem: A Widespread Concept in Medieval Islamic Mathematics |journal=Historia Mathematica |volume=7 |issue=4 |pages=401–406 |doi=10.1016/0315-0860(80)90004-X |doi-access=free }}</ref><ref name=rashed>{{cite journal |last=Rashed |first=Roshdi |author-link=Roshdi Rashed |year=1972 |title=L'induction mathématique: al-Karajī, al-Samawʾal |journal=Archive for History of Exact Sciences |volume=9 |issue=1 |pages=1–21 |jstor=41133347 |doi=10.1007/BF00348537 |language=fr }} Translated into English by A. F. W. Armstrong in {{Cite book |last=Rashed |first=Roshdi |year=1994 |title=The Development of Arabic Mathematics: Between Arithmetic and Algebra |chapter=Mathematical Induction: al-Karajī and al-Samawʾal |chapter-url=https://archive.org/details/RoshdiRashedauth.TheDevelopmentOfArabicMathematicsBetweenArithmeticAndAlgebraSpringerNetherlands1994/page/n71/ |at=§1.4, {{pgs|62–81}} |doi=10.1007/978-94-017-3274-1_2 |publisher=Kluwer |isbn=0-7923-2565-6 |quote="The first formulation of the binomial and the table of binomial coefficients, to our knowledge, is to be found in a text by al-Karajī, cited by al-Samawʾal in ''al-Bāhir''." }}</ref><ref>{{Cite encyclopedia |title=Al-Karajī |encyclopedia=Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures |last=Sesiano |first=Jacques |editor-last=Selin |editor-first=Helaine |editor-link=Helaine Selin |year=1997 |publisher=Springer |doi=10.1007/978-94-017-1416-7_11 |isbn=978-94-017-1418-1 |pages=475–476 |quote=Another [lost work of Karajī's] contained the first known explanation of the arithmetical (Pascal's) triangle; the passage in question survived through al-Samawʾal's ''Bāhir'' (twelfth century) which heavily drew from the ''Badīʿ''. }}</ref><ref> {{cite journal |last=Berggren |first=John Lennart |year=1985 |title=History of mathematics in the Islamic world: The present state of the art |journal=Review of Middle East Studies |volume=19 |number=1 |pages=9–33 |doi=10.1017/S0026318400014796 }} Republished in {{Cite book |title=From Alexandria, Through Baghdad |editor1-last=Sidoli |editor1-first=Nathan |editor2-last=Brummelen |editor2-first=Glen Van |editor2-link=Glen Van Brummelen |year=2014 |publisher=Springer |isbn=978-3-642-36735-9 |doi=10.1007/978-3-642-36736-6_4 |pages=51–71 |quote=[...] since the table of binomial coefficients had been previously found in such late works as those of al-Kāshī (fifteenth century) and Naṣīr al-Dīn al-Ṭūsī (thirteenth century), some had suggested that the table was a Chinese import. However, the use of the binomial coefficients by Islamic mathematicians of the eleventh century, in a context which had deep roots in Islamic mathematics, suggests strongly that the table was a local discovery – most probably of al-Karajī.}}</ref> An explicit statement of the binomial theorem appears in [[al-Samawʾal]]'s ''al-Bāhir'' (12th century), there credited to al-Karajī.{{r|yadegari}}{{r|rashed}} Al-Samawʾal algebraically expanded the square, cube, and fourth power of a binomial, each in terms of the previous power, and noted that similar proofs could be provided for higher powers, an early form of [[mathematical induction]]. He then provided al-Karajī's table of binomial coefficients (Pascal's triangle turned on its side) up to {{tmath|1= n = 12}} and a rule for generating them equivalent to the [[recurrence relation]] {{tmath|1=\textstyle \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} }}.{{r|rashed}}<ref name=Karaji>{{MacTutor|id=Al-Karaji|title=Abu Bekr ibn Muhammad ibn al-Husayn Al-Karaji}}</ref> The Persian poet and mathematician [[Omar Khayyam]] was probably familiar with the formula to higher orders, although many of his mathematical works are lost.<ref name="Coolidge" /> The binomial expansions of small degrees were known in the 13th century mathematical works of [[Yang Hui]]<ref>{{cite web | last = Landau | first = James A. | title = Historia Matematica Mailing List Archive: Re: [HM] Pascal's Triangle | work = Archives of Historia Matematica | format = mailing list email | access-date = 2007-04-13 | date = 1999-05-08 | url = http://archives.math.utk.edu/hypermail/historia/may99/0073.html | archive-date = 2021-02-24 | archive-url = https://web.archive.org/web/20210224081637/http://archives.math.utk.edu/hypermail/historia/may99/0073.html | url-status = dead }}</ref> and also [[Chu Shih-Chieh]].<ref name="Coolidge" /> Yang Hui attributes the method to a much earlier 11th century text of [[Jia Xian]], although those writings are now also lost.<ref>{{cite book |title=A History of Chinese Mathematics |chapter=Jia Xian and Liu Yi |last=Martzloff |first=Jean-Claude |translator-last=Wilson |translator-first=Stephen S. |publisher=Springer |year=1997 |orig-year=French ed. 1987 |isbn=3-540-54749-5 |page=142 |chapter-url=https://archive.org/details/historyofchinese0000mart_g2q8/page/142/mode/2up?&q=%22depends+on+the+binomial+expansion%22 |chapter-url-access=limited }}</ref> In Europe, descriptions of the construction of Pascal's triangle can be found as early as [[Jordanus de Nemore]]'s ''De arithmetica'' (13th century).<ref>{{cite journal |last=Hughes |first=Barnabas|year=1989 |title=The arithmetical triangle of Jordanus de Nemore |journal=Historia Mathematica |volume=16 |number=3 |pages=213–223 |doi=10.1016/0315-0860(89)90018-9 }}</ref> In 1544, [[Michael Stifel]] introduced the term "binomial coefficient" and showed how to use them to express <math>(1+x)^n</math> in terms of <math>(1+x)^{n-1}</math>, via "Pascal's triangle".<ref name=Kline>{{cite book|title=History of mathematical thought|first=Morris| last=Kline| author-link=Morris Kline|page=273|publisher=Oxford University Press|year=1972}}</ref> Other 16th century mathematicians including [[Niccolò Fontana Tartaglia]] and [[Simon Stevin]] also knew of it.<ref name=Kline /> 17th-century mathematician [[Blaise Pascal]] studied the eponymous triangle comprehensively in his ''Traité du triangle arithmétique''.<ref>{{Cite book |last=Katz |first=Victor |author-link=Victor Katz |title=A History of Mathematics: An Introduction |edition=3rd |publisher=Addison-Wesley |year=2009 |orig-year=1993 |isbn=978-0-321-38700-4 |at=§ 14.3, {{pgs|487–497}} |chapter=Elementary Probability }}</ref> By the early 17th century, some specific cases of the generalized binomial theorem, such as for <math>n=\tfrac{1}{2}</math>, can be found in the work of [[Henry Briggs (mathematician)|Henry Briggs]]' ''Arithmetica Logarithmica'' (1624).{{r|stillwell}} [[Isaac Newton]] is generally credited with discovering the generalized binomial theorem, valid for any real exponent, in 1665, inspired by the work of [[John Wallis]]'s ''Arithmetic Infinitorum'' and his method of interpolation.<ref name=Kline /><ref>{{cite book |title=Elements of the History of Mathematics |date=1994 |first=N. |last=Bourbaki |author-link=Nicolas Bourbaki |translator=J. Meldrum |translator-link=John D. P. Meldrum |publisher=Springer |isbn=3-540-19376-6 |url-access=registration |url=https://archive.org/details/elementsofhistor0000bour}}</ref><ref name="Coolidge" /><ref>{{Cite journal |last=Whiteside |first=D. T. |author-link=Tom Whiteside |date=1961 |title=Newton's Discovery of the General Binomial Theorem |url=https://www.cambridge.org/core/journals/mathematical-gazette/article/abs/newtons-discovery-of-the-general-binomial-theorem/19B5921B0248598CFB6441FCE085D113 |journal=The Mathematical Gazette |language=en |volume=45 |issue=353 |pages=175–180 |doi=10.2307/3612767 |jstor=3612767 }}</ref>{{r|stillwell}} A logarithmic version of the theorem for fractional exponents was discovered independently by [[James Gregory (mathematician)|James Gregory]] who wrote down his formula in 1670.<ref name=stillwell>{{cite book |last=Stillwell |first=John |author-link=John Stillwell |title=Mathematics and its history |date=2010 |publisher=Springer |isbn=978-1-4419-6052-8 |page=186 |edition=3rd}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)