Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cartesian coordinate system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====General matrix form of the transformations==== All [[affine transformation]]s of the plane can be described in a uniform way by using matrices. For this purpose, the coordinates <math>(x,y)</math> of a point are commonly represented as the [[column matrix]] <math>\begin{pmatrix}x\\y\end{pmatrix}.</math> The result <math>(x', y')</math> of applying an affine transformation to a point <math>(x,y)</math> is given by the formula <math display=block>\begin{pmatrix}x'\\y'\end{pmatrix} = A \begin{pmatrix}x\\y\end{pmatrix} + b,</math> where <math display=block>A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix}</math> is a 2Γ2 [[Square matrix|matrix]] and <math>b=\begin{pmatrix}b_1\\b_2\end{pmatrix}</math> is a column matrix.<ref>{{harvnb|Brannan|Esplen|Gray|1998|p=49}}.</ref> That is, <math display=block> \begin{align} x' &= x A_{1,1} + y A_{1,1} + b_{1} \\ y' &= x A_{2,1} + y A_{2, 2} + b_{2}. \end{align} </math> Among the affine transformations, the [[Euclidean transformation]]s are characterized by the fact that the matrix <math>A</math> is [[orthogonal matrix|orthogonal]]; that is, its columns are [[orthogonal vectors]] of [[Euclidean norm]] one, or, explicitly, <math display=block>A_{1,1} A_{1, 2} + A_{2,1} A_{2, 2} = 0</math> and <math display=block>A_{1, 1}^2 + A_{2,1}^2 = A_{1,2}^2 + A_{2, 2}^2 = 1.</math> This is equivalent to saying that {{math|''A''}} times its [[transpose]] is the [[identity matrix]]. If these conditions do not hold, the formula describes a more general [[affine transformation]]. The transformation is a translation [[if and only if]] {{math|''A''}} is the [[identity matrix]]. The transformation is a rotation around some point if and only if {{math|''A''}} is a [[rotation matrix]], meaning that it is orthogonal and <math display=block> A_{1, 1} A_{2, 2} - A_{2, 1} A_{1, 2} = 1 .</math> A reflection or glide reflection is obtained when, <math display=block> A_{1, 1} A_{2, 2} - A_{2, 1} A_{1, 2} = -1 .</math> Assuming that translations are not used (that is, <math>b_1=b_2=0</math>) transformations can be [[function composition|composed]] by simply multiplying the associated transformation matrices. In the general case, it is useful to use the [[augmented matrix]] of the transformation; that is, to rewrite the transformation formula <math display=block>\begin{pmatrix}x'\\y'\\1\end{pmatrix} = A' \begin{pmatrix}x\\y\\1\end{pmatrix},</math> where <math display=block>A' = \begin{pmatrix} A_{1,1} & A_{1,2}&b_1 \\ A_{2,1} & A_{2,2}&b_2\\0&0&1 \end{pmatrix}.</math> With this trick, the composition of affine transformations is obtained by multiplying the augmented matrices.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)