Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cholesky decomposition
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== LDL decomposition === An alternative form, eliminating the need to take square roots when {{math|'''A'''}} is symmetric, is the symmetric indefinite factorization<ref>{{cite book |first=D. |last=Watkins |year=1991 |title=Fundamentals of Matrix Computations |url=https://archive.org/details/fundamentalsofma0000watk |url-access=registration |location=New York |publisher=Wiley |page=[https://archive.org/details/fundamentalsofma0000watk/page/84 84] |isbn=0-471-61414-9 }}</ref> <math display=block> \begin{align} \mathbf{A} = \mathbf{LDL}^\mathrm{T} & = \begin{pmatrix} 1 & 0 & 0 \\ L_{21} & 1 & 0 \\ L_{31} & L_{32} & 1\\ \end{pmatrix} \begin{pmatrix} D_1 & 0 & 0 \\ 0 & D_2 & 0 \\ 0 & 0 & D_3\\ \end{pmatrix} \begin{pmatrix} 1 & L_{21} & L_{31} \\ 0 & 1 & L_{32} \\ 0 & 0 & 1\\ \end{pmatrix} \\[8pt] & = \begin{pmatrix} D_1 & &(\mathrm{symmetric}) \\ L_{21}D_1 & L_{21}^2D_1 + D_2& \\ L_{31}D_1 & L_{31}L_{21}D_{1}+L_{32}D_2 & L_{31}^2D_1 + L_{32}^2D_2+D_3. \end{pmatrix}. \end{align} </math> The following recursive relations apply for the entries of {{math|'''D'''}} and {{math|'''L'''}}: <math display=block> D_j = A_{jj} - \sum_{k=1}^{j-1} L_{jk}^2 D_k, </math> <math display=block> L_{ij} = \frac{1}{D_j} \left( A_{ij} - \sum_{k=1}^{j-1} L_{ik} L_{jk} D_k \right) \quad \text{for } i>j. </math> This works as long as the generated diagonal elements in {{math|'''D'''}} stay non-zero. The decomposition is then unique. {{math|'''D'''}} and {{math|'''L'''}} are real if {{math|'''A'''}} is real. For complex Hermitian matrix {{math|'''A'''}}, the following formula applies: <math display=block> D_{j} = A_{jj} - \sum_{k=1}^{j-1} L_{jk}L_{jk}^* D_k, </math> <math display=block> L_{ij} = \frac{1}{D_j} \left( A_{ij} - \sum_{k=1}^{j-1} L_{ik} L_{jk}^* D_k \right) \quad \text{for } i>j. </math> Again, the pattern of access allows the entire computation to be performed in-place if desired.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)