Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Covariance matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Estimation== {{Main|Estimation of covariance matrices}} If <math>\mathbf{M}_{\mathbf{X}}</math> and <math>\mathbf{M}_{\mathbf{Y}}</math> are centered [[Data matrix (multivariate statistics)|data matrices]] of dimension <math>p \times n</math> and <math>q \times n</math> respectively, i.e. with ''n'' columns of observations of ''p'' and ''q'' rows of variables, from which the row means have been subtracted, then, if the row means were estimated from the data, sample covariance matrices <math>\mathbf{Q}_{\mathbf{XX}}</math> and <math>\mathbf{Q}_{\mathbf{XY}}</math> can be defined to be <math display="block"> \mathbf{Q}_{\mathbf{XX}} = \frac{1}{n-1} \mathbf{M}_{\mathbf{X}} \mathbf{M}_{\mathbf{X}}^\mathsf{T}, \qquad \mathbf{Q}_{\mathbf{XY}} = \frac{1}{n-1} \mathbf{M}_{\mathbf{X}} \mathbf{M}_{\mathbf{Y}}^\mathsf{T} </math> or, if the row means were known a priori, <math display="block"> \mathbf{Q}_{\mathbf{XX}} = \frac{1}{n} \mathbf{M}_{\mathbf{X}} \mathbf{M}_{\mathbf{X}}^\mathsf{T}, \qquad \mathbf{Q}_{\mathbf{XY}} = \frac{1}{n} \mathbf{M}_{\mathbf{X}} \mathbf{M}_{\mathbf{Y}}^\mathsf{T}. </math> These empirical sample covariance matrices are the most straightforward and most often used estimators for the covariance matrices, but other estimators also exist, including regularised or shrinkage estimators, which may have better properties.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)