Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Covering space
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Universal covering == === Definition === Let <math>p: \tilde X \rightarrow X</math> be a [[Simply connected space|simply connected]] covering. If <math>\beta : E \rightarrow X</math> is another simply connected covering, then there exists a uniquely determined homeomorphism <math>\alpha : \tilde X \rightarrow E</math>, such that the diagram [[File:Universelle_Überlagerung_2.0.png|center|frameless]] commutes.{{r|Munkres|p=482}} This means that <math>p</math> is, up to equivalence, uniquely determined and because of that [[universal property]] denoted as the '''universal covering''' of the space <math>X</math>. === Existence === A universal covering does not always exist. The following theorem guarantees its existence for a certain class of base spaces. Let <math>X</math> be a connected, [[Locally simply connected space|locally simply connected]] topological space. Then, there exists a universal covering <math>p:\tilde X \rightarrow X.</math> The set <math>\tilde X</math> is defined as <math>\tilde X = \{\gamma:\gamma \text{ is a path in }X \text{ with }\gamma(0) = x_0 \}/\text{homotopy with fixed ends},</math> where <math>x_0 \in X</math> is any chosen base point. The map <math>p:\tilde X \rightarrow X</math> is defined by <math>p([\gamma])=\gamma(1).</math>{{r|Hatcher|p=64}} The [[topology]] on <math>\tilde X</math> is constructed as follows: Let <math>\gamma:I \rightarrow X</math> be a path with <math>\gamma(0)=x_0.</math> Let <math>U</math> be a simply connected neighborhood of the endpoint <math>x=\gamma(1).</math> Then, for every <math>y \in U,</math> there is a [[path (topology)|path]] <math>\sigma_y</math> inside <math>U</math> from <math>x</math> to <math>y</math> that is unique up to [[homotopy]]. Now consider the set <math>\tilde U=\{\gamma\sigma_y:y \in U \}/\text{homotopy with fixed ends}.</math> The restriction <math>p|_{\tilde U}: \tilde U \rightarrow U</math> with <math>p([\gamma\sigma_y])=\gamma\sigma_y(1)=y</math> is a bijection and <math>\tilde U</math> can be equipped with the [[final topology]] of <math>p|_{\tilde U}.</math>{{explain|date=December 2024|reason=How do these topologies on the tilde-U combine into one on tilde-X?}} The fundamental group <math>\pi_{1}(X,x_0) = \Gamma</math> acts [[Free group action|freely]] on <math>\tilde X</math> by <math>([\gamma],[\tilde x]) \mapsto [\gamma\tilde x],</math> and the orbit space <math>\Gamma \backslash \tilde X</math> is homeomorphic to <math>X</math> through the map <math>[\Gamma \tilde x]\mapsto\tilde x(1).</math> === Examples === [[File:Hawaiian_Earrings.svg|right|thumb|250x250px|The Hawaiian earring. Only the ten largest circles are shown.]] * <math>r : \mathbb{R} \to S^1</math> with <math>r(t)=(\cos(2 \pi t), \sin(2 \pi t))</math> is the universal covering of the unit circle <math>S^1</math>. * <math>p : S^n \to \mathbb{R}P^n \cong \{+1,-1\}\backslash S^n</math> with <math>p(x)=[x]</math> is the universal covering of the [[projective space]] <math>\mathbb{R}P^n</math> for <math>n>1</math>. * <math>q : \mathrm{SU}(n) \ltimes \mathbb{R} \to U(n)</math> with <math display=block>q(A,t)= \begin{bmatrix} \exp(2 \pi i t) & 0\\ 0 & I_{n-1} \end{bmatrix}_\vphantom{x} A </math> is the universal covering of the [[unitary group]] <math>U(n)</math>.<ref>{{Cite journal |last1=Aguilar |first1=Marcelo Alberto |last2=Socolovsky |first2=Miguel |date=23 November 1999 |title=The Universal Covering Group of U(n) and Projective Representations |journal=[[International Journal of Theoretical Physics]] |publisher=Springer US |publication-date=April 2000 |volume=39 |issue=4 |pages=997–1013 |arxiv=math-ph/9911028 |doi=10.1023/A:1003694206391 |bibcode=1999math.ph..11028A|s2cid=18686364 }}</ref>{{rp|p=5|at=Theorem 1}} * Since <math>\mathrm{SU}(2) \cong S^3</math>, it follows that the [[quotient map (topology)|quotient map]] <math display=block>f : \mathrm{SU}(2) \rightarrow \mathrm{SU}(2) / \mathbb{Z_2} \cong \mathrm{SO}(3)</math> is the universal covering of <math>\mathrm{SO}(3)</math>. * A topological space which has no universal covering is the [[Hawaiian earring]]: <math display=block> X = \bigcup_{n\in \N}\left\{(x_1,x_2)\in\R^{2} : \Bigl(x_1-\frac{1}{n}\Bigr)^2+x_2^2=\frac{1}{n^2}\right\} </math> One can show that no neighborhood of the origin <math>(0,0)</math> is simply connected.{{r|Munkres|p=487|at=Example 1}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)