Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cross section (physics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Scattering from a 3D spherical mirror === The result from the previous example can be used to solve the analogous problem in three dimensions, i.e., scattering from a perfectly reflecting sphere of radius {{math|''a''}}. The plane perpendicular to the incoming light beam can be parameterized by cylindrical coordinates {{math|''r''}} and {{math|''Ο''}}. In any plane of the incoming and the reflected ray we can write (from the previous example): : <math>\begin{align} r &= a \sin \alpha,\\ \mathrm dr &= a \cos \alpha \,\mathrm d \alpha, \end{align}</math> while the impact area element is : <math> \mathrm d \sigma = \mathrm d r(r) \times r \,\mathrm d \varphi = \frac{a^2}{2} \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) \,\mathrm d \theta \,\mathrm d \varphi.</math> In spherical coordinates, : <math>\mathrm d\Omega = \sin \theta \,\mathrm d \theta \,\mathrm d \varphi.</math> Together with the trigonometric identity : <math>\sin \theta = 2 \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right),</math> we obtain : <math>\frac{\mathrm d \sigma}{\mathrm d \Omega} = \frac{a^2}{4}.</math> The total cross section is : <math>\sigma = \oint_{4 \pi} \frac{\mathrm d \sigma}{\mathrm d \Omega} \,\mathrm d \Omega = \pi a^2.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)