Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirichlet distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Conjugate prior of the Dirichlet distribution=== Because the Dirichlet distribution is an [[exponential family|exponential family distribution]] it has a conjugate prior. The conjugate prior is of the form:<ref name=Lefkimmiatis2009>{{cite journal |first1=Stamatios |last1=Lefkimmiatis |first2=Petros |last2=Maragos |first3=George |last3=Papandreou |year=2009 |title=Bayesian Inference on Multiscale Models for Poisson Intensity Estimation: Applications to Photon-Limited Image Denoising |journal=IEEE Transactions on Image Processing |volume=18 |issue=8 |pages=1724β1741 |doi=10.1109/TIP.2009.2022008 |pmid=19414285 |bibcode=2009ITIP...18.1724L |s2cid=859561 }}</ref> <math display=block>\operatorname{CD}(\boldsymbol\alpha \mid \boldsymbol{v},\eta) \propto \left(\frac{1}{\operatorname{B}(\boldsymbol\alpha)}\right)^\eta \exp\left(-\sum_k v_k \alpha_k\right).</math> Here <math>\boldsymbol{v}</math> is a {{mvar|K}}-dimensional real vector and <math>\eta</math> is a scalar parameter. The domain of <math>(\boldsymbol{v},\eta)</math> is restricted to the set of parameters for which the above unnormalized density function can be normalized. The (necessary and sufficient) condition is:<ref name=Andreoli2018>{{cite arXiv |last=Andreoli |first=Jean-Marc |year=2018 |eprint=1811.05266 |title=A conjugate prior for the Dirichlet distribution |class=cs.LG }}</ref> <math display=block> \forall k\;\;v_k>0\;\;\;\;\text{ and } \;\;\;\;\eta>-1 \;\;\;\;\text{ and } \;\;\;\;(\eta\leq0\;\;\;\;\text{ or }\;\;\;\;\sum_k \exp-\frac{v_k} \eta < 1) </math> The conjugation property can be expressed as : if [''prior'': <math>\boldsymbol{\alpha}\sim\operatorname{CD}(\cdot \mid \boldsymbol{v},\eta)</math>] and [''observation'': <math>\boldsymbol{x}\mid\boldsymbol{\alpha}\sim\operatorname{Dirichlet}(\cdot \mid \boldsymbol{\alpha})</math>] then [''posterior'': <math>\boldsymbol{\alpha}\mid\boldsymbol{x}\sim\operatorname{CD}(\cdot \mid \boldsymbol{v}-\log \boldsymbol{x}, \eta+1)</math>]. In the published literature there is no practical algorithm to efficiently generate samples from <math>\operatorname{CD}(\boldsymbol{\alpha} \mid \boldsymbol{v},\eta)</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)