Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Entropy (information theory)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Limitations of entropy in cryptography=== In [[cryptanalysis]], entropy is often roughly used as a measure of the unpredictability of a cryptographic key, though its real [[Uncertainty principle|uncertainty]] is unmeasurable. For example, a 128-bit key that is uniformly and randomly generated has 128 bits of entropy. It also takes (on average) <math>2^{127}</math> guesses to break by brute force. Entropy fails to capture the number of guesses required if the possible keys are not chosen uniformly.<ref>{{cite conference |first1=James |last1=Massey |year=1994 |title=Guessing and Entropy |book-title=Proc. IEEE International Symposium on Information Theory |url=http://www.isiweb.ee.ethz.ch/archive/massey_pub/pdf/BI633.pdf |access-date=31 December 2013 |archive-date=1 January 2014 |archive-url=https://web.archive.org/web/20140101065020/http://www.isiweb.ee.ethz.ch/archive/massey_pub/pdf/BI633.pdf |url-status=live }}</ref><ref>{{cite conference |first1=David |last1=Malone |first2=Wayne |last2=Sullivan |year=2005 |title=Guesswork is not a Substitute for Entropy |book-title=Proceedings of the Information Technology & Telecommunications Conference |url=http://www.maths.tcd.ie/~dwmalone/p/itt05.pdf |access-date=31 December 2013 |archive-date=15 April 2016 |archive-url=https://web.archive.org/web/20160415054357/http://www.maths.tcd.ie/~dwmalone/p/itt05.pdf |url-status=live }}</ref> Instead, a measure called ''guesswork'' can be used to measure the effort required for a brute force attack.<ref>{{cite conference |first1=John |last1=Pliam |title=Selected Areas in Cryptography |year=1999 |chapter=Guesswork and variation distance as measures of cipher security|series=Lecture Notes in Computer Science |volume=1758 |pages=62β77 |book-title=International Workshop on Selected Areas in Cryptography |doi=10.1007/3-540-46513-8_5 |isbn=978-3-540-67185-5 |doi-access=free }}</ref> Other problems may arise from non-uniform distributions used in cryptography. For example, a 1,000,000-digit binary [[one-time pad]] using exclusive or. If the pad has 1,000,000 bits of entropy, it is perfect. If the pad has 999,999 bits of entropy, evenly distributed (each individual bit of the pad having 0.999999 bits of entropy) it may provide good security. But if the pad has 999,999 bits of entropy, where the first bit is fixed and the remaining 999,999 bits are perfectly random, the first bit of the ciphertext will not be encrypted at all.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)