Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Equivalence relation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Fundamental theorem of equivalence relations == A key result links equivalence relations and partitions:<ref>Wallace, D. A. R., 1998. ''Groups, Rings and Fields''. p. 31, Th. 8. Springer-Verlag.</ref><ref>Dummit, D. S., and Foote, R. M., 2004. ''Abstract Algebra'', 3rd ed. p. 3, Prop. 2. John Wiley & Sons.</ref><ref>[[Karel Hrbacek]] & [[Thomas Jech]] (1999) ''Introduction to Set Theory'', 3rd edition, pages 29β32, [[Marcel Dekker]]</ref> * An equivalence relation ~ on a set ''X'' partitions ''X''. * Conversely, corresponding to any partition of ''X'', there exists an equivalence relation ~ on ''X''. In both cases, the cells of the partition of ''X'' are the equivalence classes of ''X'' by ~. Since each element of ''X'' belongs to a unique cell of any partition of ''X'', and since each cell of the partition is identical to an equivalence class of ''X'' by ~, each element of ''X'' belongs to a unique equivalence class of ''X'' by ~. Thus there is a natural [[bijection]] between the set of all equivalence relations on ''X'' and the set of all partitions of ''X''.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)