Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Four-vector
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Four-gradient=== Considering that [[partial derivative]]s are [[linear operator]]s, one can form a [[four-gradient]] from the partial [[time derivative]] {{math|β}}/{{math|β}}''t'' and the spatial [[gradient]] β. Using the standard basis, in index and abbreviated notations, the contravariant components are: <math display="block">\begin{align} \boldsymbol{\partial} & = \left(\frac{\partial }{\partial x_0}, \, -\frac{\partial }{\partial x_1}, \, -\frac{\partial }{\partial x_2}, \, -\frac{\partial }{\partial x_3} \right) \\ & = (\partial^0, \, - \partial^1, \, - \partial^2, \, - \partial^3) \\ & = \mathbf{E}_0\partial^0 - \mathbf{E}_1\partial^1 - \mathbf{E}_2\partial^2 - \mathbf{E}_3\partial^3 \\ & = \mathbf{E}_0\partial^0 - \mathbf{E}_i\partial^i \\ & = \mathbf{E}_\alpha \partial^\alpha \\ & = \left(\frac{1}{c}\frac{\partial}{\partial t} , \, - \nabla \right) \\ & = \left(\frac{\partial_t}{c},- \nabla \right) \\ & = \mathbf{E}_0\frac{1}{c}\frac{\partial}{\partial t} - \nabla \\ \end{align}</math> Note the basis vectors are placed in front of the components, to prevent confusion between taking the derivative of the basis vector, or simply indicating the partial derivative is a component of this four-vector. The covariant components are: <math display="block">\begin{align} \boldsymbol{\partial} & = \left(\frac{\partial }{\partial x^0}, \, \frac{\partial }{\partial x^1}, \, \frac{\partial }{\partial x^2}, \, \frac{\partial }{\partial x^3} \right) \\ & = (\partial_0, \, \partial_1, \, \partial_2, \, \partial_3) \\ & = \mathbf{E}^0\partial_0 + \mathbf{E}^1\partial_1 + \mathbf{E}^2\partial_2 + \mathbf{E}^3\partial_3 \\ & = \mathbf{E}^0\partial_0 + \mathbf{E}^i\partial_i \\ & = \mathbf{E}^\alpha \partial_\alpha \\ & = \left(\frac{1}{c}\frac{\partial}{\partial t} , \, \nabla \right) \\ & = \left(\frac{\partial_t}{c}, \nabla \right) \\ & = \mathbf{E}^0\frac{1}{c}\frac{\partial}{\partial t} + \nabla \\ \end{align}</math> Since this is an operator, it doesn't have a "length", but evaluating the inner product of the operator with itself gives another operator: <math display="block">\partial^\mu \partial_\mu = \frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \nabla^2 = \frac{{\partial_t}^2}{c^2} - \nabla^2</math> called the [[D'Alembert operator]]. ==Kinematics== === Four-velocity === {{Main|Four-velocity}} The [[four-velocity]] of a particle is defined by: <math display="block">\mathbf{U} = \frac{d\mathbf{X}}{d \tau} = \frac{d\mathbf{X}}{dt}\frac{dt}{d \tau} = \gamma(\mathbf{u})\left(c, \mathbf{u}\right),</math> Geometrically, '''U''' is a normalized vector tangent to the [[world line]] of the particle. Using the differential of the four-position, the magnitude of the four-velocity can be obtained: <math display="block">\|\mathbf{U}\|^2 = U^\mu U_\mu = \frac{dX^\mu}{d\tau} \frac{dX_\mu}{d\tau} = \frac{dX^\mu dX_\mu}{d\tau^2} = c^2 \,,</math> in short, the magnitude of the four-velocity for any object is always a fixed constant: <math display="block">\| \mathbf{U} \|^2 = c^2 </math> The norm is also: <math display="block">\|\mathbf{U}\|^2 = {\gamma(\mathbf{u})}^2 \left( c^2 - \mathbf{u}\cdot\mathbf{u} \right) \,,</math> so that: <math display="block">c^2 = {\gamma(\mathbf{u})}^2 \left( c^2 - \mathbf{u}\cdot\mathbf{u} \right) \,,</math> which reduces to the definition of the [[Lorentz factor]]. Units of four-velocity are m/s in [[International System of Units|SI]] and 1 in the [[geometrized unit system]]. Four-velocity is a contravariant vector.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)