Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Geometric distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Bayesian inference === In [[Bayesian inference]], the parameter <math>p</math> is a random variable from a [[prior distribution]] with a [[posterior distribution]] calculated using [[Bayes' theorem]] after observing samples.<ref name=":3" />{{Rp|page=167}} If a [[beta distribution]] is chosen as the prior distribution, then the posterior will also be a beta distribution and it is called the [[conjugate distribution]]. In particular, if a <math>\mathrm{Beta}(\alpha,\beta)</math> prior is selected, then the posterior, after observing samples <math>k_1, \dotsc, k_n \in \mathbb{N}</math>, is<ref>{{Cite CiteSeerX |citeseerx=10.1.1.157.5540 |first=Daniel |last=Fink |title=A Compendium of Conjugate Priors}}</ref><math display="block">p \sim \mathrm{Beta}\left(\alpha+n,\ \beta+\sum_{i=1}^n (k_i-1)\right). \!</math>Alternatively, if the samples are in <math>\mathbb{N}_0</math>, the posterior distribution is<ref>{{Cite web|url=http://halweb.uc3m.es/esp/Personal/personas/mwiper/docencia/English/PhD_Bayesian_Statistics/ch3_2009.pdf |archive-url=https://web.archive.org/web/20100408092905/http://halweb.uc3m.es/esp/Personal/personas/mwiper/docencia/English/PhD_Bayesian_Statistics/ch3_2009.pdf |archive-date=2010-04-08 |url-status=live|title=3. Conjugate families of distributions}}</ref><math display="block">p \sim \mathrm{Beta}\left(\alpha+n,\beta+\sum_{i=1}^n k_i\right).</math>Since the expected value of a <math>\mathrm{Beta}(\alpha,\beta)</math> distribution is <math>\frac{\alpha}{\alpha+\beta}</math>,<ref name=":9" />{{Rp|page=145}} as <math>\alpha</math> and <math>\beta</math> approach zero, the posterior mean approaches its maximum likelihood estimate.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)