Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Inverse trigonometric functions
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Indefinite integrals of inverse trigonometric functions=== For real and complex values of ''z'': :<math>\begin{align} \int \arcsin(z) \, dz &{}= z \, \arcsin(z) + \sqrt{1 - z^2} + C\\ \int \arccos(z) \, dz &{}= z \, \arccos(z) - \sqrt{1 - z^2} + C\\ \int \arctan(z) \, dz &{}= z \, \arctan(z) - \frac{1}{2} \ln \left( 1 + z^2 \right) + C\\ \int \arccot(z) \, dz &{}= z \, \arccot(z) + \frac{1}{2} \ln \left( 1 + z^2 \right) + C\\ \int \arcsec(z) \, dz &{}= z \, \arcsec(z) - \ln \left[ z \left( 1 + \sqrt{ \frac{z^2-1}{z^2} } \right) \right] + C\\ \int \arccsc(z) \, dz &{}= z \, \arccsc(z) + \ln \left[ z \left( 1 + \sqrt{ \frac{z^2-1}{z^2} } \right) \right] + C \end{align}</math> For real ''x'' β₯ 1: :<math>\begin{align} \int \arcsec(x) \, dx &{}= x \, \arcsec(x) - \ln \left( x + \sqrt{x^2-1} \right) + C\\ \int \arccsc(x) \, dx &{}= x \, \arccsc(x) + \ln \left( x + \sqrt{x^2-1} \right) + C \end{align}</math> For all real ''x'' not between -1 and 1: :<math>\begin{align} \int \arcsec(x) \, dx &{}= x \, \arcsec(x) - \sgn(x) \ln\left| x + \sqrt{x^2-1}\right| + C\\ \int \arccsc(x) \, dx &{}= x \, \arccsc(x) + \sgn(x) \ln\left| x + \sqrt{x^2-1}\right| + C \end{align}</math> The absolute value is necessary to compensate for both negative and positive values of the arcsecant and arccosecant functions. The signum function is also necessary due to the absolute values in the [[#Derivatives|derivative]]s of the two functions, which create two different solutions for positive and negative values of x. These can be further simplified using the logarithmic definitions of the [[Inverse hyperbolic functions#Logarithmic representation|inverse hyperbolic function]]s: :<math>\begin{align} \int \arcsec(x) \, dx &{}= x \, \arcsec(x) - \operatorname{arcosh}(|x|) + C\\ \int \arccsc(x) \, dx &{}= x \, \arccsc(x) + \operatorname{arcosh}(|x|) + C\\ \end{align}</math> The absolute value in the argument of the arcosh function creates a negative half of its graph, making it identical to the signum logarithmic function shown above. All of these antiderivatives can be derived using [[integration by parts]] and the simple derivative forms shown above. ====Example==== Using <math>\int u \, dv = u v - \int v \, du</math> (i.e. [[integration by parts]]), set :<math>\begin{align} u &= \arcsin(x) & dv &= dx \\ du &= \frac{dx}{\sqrt{1-x^2}} & v &= x \end{align}</math> Then :<math>\int \arcsin(x) \, dx = x \arcsin(x) - \int \frac{x}{\sqrt{1-x^2}} \, dx,</math> which by the simple [[Integration by substitution|substitution]] <math>w=1-x^2,\ dw = -2x\,dx</math> yields the final result: :<math>\int \arcsin(x) \, dx = x \arcsin(x) + \sqrt{1-x^2} + C </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)