Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Kolmogorov complexity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Minimum message length== {{Main|Minimum message length}} The minimum message length principle of statistical and inductive inference and machine learning was developed by [[Chris Wallace (computer scientist)|C.S. Wallace]] and D.M. Boulton in 1968. MML is [[Bayesian probability|Bayesian]] (i.e. it incorporates prior beliefs) and information-theoretic. It has the desirable properties of statistical invariance (i.e. the inference transforms with a re-parametrisation, such as from polar coordinates to Cartesian coordinates), statistical consistency (i.e. even for very hard problems, MML will converge to any underlying model) and efficiency (i.e. the MML model will converge to any true underlying model about as quickly as is possible). C.S. Wallace and D.L. Dowe (1999) showed a formal connection between MML and algorithmic information theory (or Kolmogorov complexity).<ref>{{cite journal |citeseerx=10.1.1.17.321 |title=Minimum Message Length and Kolmogorov Complexity |journal=Computer Journal |volume=42 |issue=4 |pages=270β283 |year=1999 |last1=Wallace |first1=C. S. |last2=Dowe |first2=D. L. |doi=10.1093/comjnl/42.4.270 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)