Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Legendre polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Zeros === All <math> n</math> zeros of <math>P_n(x)</math> are real, distinct from each other, and lie in the interval <math>(-1,1)</math>. Furthermore, if we regard them as dividing the interval <math>[-1,1]</math> into <math> n+1 </math> subintervals, each subinterval will contain exactly one zero of <math>P_{n+1}</math>. This is known as the interlacing property. Because of the parity property it is evident that if <math>x_k</math> is a zero of <math>P_n(x)</math>, so is <math>-x_k</math>. These zeros play an important role in [[numerical integration]] based on [[Gaussian quadrature]]. The specific quadrature based on the <math>P_n</math>'s is known as [[Gauss-Legendre quadrature]]. The zeros of <math>P_n(\cos \theta)</math> are distributed nearly uniformly over the range of <math>\theta \in (0, \pi)</math>, in the sense that there is one zero <math>\theta \in \left(\frac{\pi(k + 1/2)}{n + 1/2}, \frac{\pi(k + 1)}{n + 1/2}\right)</math> per <math>k = 0, 1, \dots, n-1</math>.<ref>{{Cite journal |last=Askey |first=Richard |date=November 1969 |title=Mehler's Integral for P_n (cos ΞΈ) |url=https://www.tandfonline.com/doi/abs/10.1080/00029890.1969.12000407 |journal=The American Mathematical Monthly |language=en |volume=76 |issue=9 |pages=1046β1049 |doi=10.1080/00029890.1969.12000407 |issn=0002-9890}}</ref> This can be proved by looking at the first formula of Dirichlet-Mehler.<ref>{{Cite journal |last=Bruns |first=H. |date=1881 |title=Zur Theorie der Kugelfunctionen. |url=https://www.degruyter.com/document/doi/10.1515/crll.1881.90.322/html |journal=CRLL |language=en |volume=1881 |issue=90 |pages=322β328 |doi=10.1515/crll.1881.90.322 |issn=1435-5345}}</ref> From this property and the facts that <math> P_n(\pm 1) \ne 0 </math>, it follows that <math> P_n(x) </math> has <math> n-1 </math> local minima and maxima in <math> (-1,1) </math>. Equivalently, <math> dP_n(x)/dx </math> has <math> n -1 </math> zeros in <math> (-1,1) </math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)