Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Length of a module
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Example on a projective variety ==== For example, consider a [[projective surface]] <math>Z(h) \subset \mathbb{P}^3</math> defined by a polynomial <math>h \in k[x_0,x_1,x_2,x_3]</math>, then the order of vanishing of a rational function<math display=block>F = \frac{f}{g}</math>is given by<math display=block>\operatorname{ord}_{Z(h)}(F) = \operatorname{ord}_{Z(h)}(f) - \operatorname{ord}_{Z(h)}(g) </math>where<math display=block>\operatorname{ord}_{Z(h)}(f) = \text{length}_{\mathcal{O}_{Z(h),\mathbb{P}^3}}\left( \frac{\mathcal{O}_{Z(h),\mathbb{P}^3}}{(f)} \right)</math>For example, if <math>h = x_0^3 + x_1^3 + x_2^3 + x_2^3</math> and <math>f = x^2 + y^2</math> and <math>g = h^2(x_0 + x_1 - x_3)</math> then<math display=block>\operatorname{ord}_{Z(h)}(f) = \text{length}_{\mathcal{O}_{Z(h),\mathbb{P}^3}}\left( \frac{\mathcal{O}_{Z(h),\mathbb{P}^3}}{(x^2 + y^2)} \right) = 0</math>since <math>x^2 + y^2</math> is a [[Unit (ring theory)|unit]] in the [[local ring]] <math>\mathcal{O}_{Z(h),\mathbb{P}^3}</math>. In the other case, <math>x_0 + x_1 - x_3</math> is a unit, so the quotient module is isomorphic to<math display=block>\frac{\mathcal{O}_{Z(h), \mathbb{P}^3}}{(h^2)}</math>so it has length <math>2</math>. This can be found using the maximal proper sequence<math display=block>(0) \subset \frac{\mathcal{O}_{Z(h), \mathbb{P}^3}}{(h)} \subset \frac{\mathcal{O}_{Z(h), \mathbb{P}^3}}{(h^2)}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)