Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Linear elasticity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Elastodynamics in terms of stresses === Elimination of displacements and strains from the governing equations leads to the '''Ignaczak equation of elastodynamics'''<ref>[[Ostoja-Starzewski, M.]], (2018), ''Ignaczak equation of elastodynamics'', Mathematics and Mechanics of Solids. {{doi|10.1177/1081286518757284}}</ref> <math display="block">\left( \rho ^{-1} \sigma _{(ik},_{k}\right) ,_{j)} - S_{ijkl} \ddot{\sigma}_{kl} + \left( \rho ^{-1} F_{(i}\right) ,_{j)} = 0.</math> In the case of local isotropy, this reduces to <math display="block">\left( \rho ^{-1} \sigma _{(ik},_{k}\right) ,_{j)} - \frac{1}{2\mu } \left( \ddot{\sigma}_{ij} - \frac{\lambda }{3 \lambda +2\mu }\ddot{\sigma}_{kk}\delta _{ij}\right) +\left( \rho ^{-1} F_{(i}\right) ,_{j)} = 0. </math> The principal characteristics of this formulation include: (1) avoids gradients of compliance but introduces gradients of mass density; (2) it is derivable from a variational principle; (3) it is advantageous for handling traction initial-boundary value problems, (4) allows a tensorial classification of elastic waves, (5) offers a range of applications in elastic wave propagation problems; (6) can be extended to dynamics of classical or micropolar solids with interacting fields of diverse types (thermoelastic, fluid-saturated porous, piezoelectro-elastic...) as well as nonlinear media.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)