Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Linear form
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Change of field == {{anchor|Real and complex linear functionals|Real and imaginary parts of a linear functional}} {{See also|Linear complex structure|Complexification}} Suppose that <math>X</math> is a vector space over <math>\Complex.</math> Restricting scalar multiplication to <math>\R</math> gives rise to a real vector space{{sfn|Rudin|1991|pp=57}} <math>X_{\R}</math> called the {{em|[[realification]]}} of <math>X.</math> Any vector space <math>X</math> over <math>\Complex</math> is also a vector space over <math>\R,</math> endowed with a [[Linear complex structure|complex structure]]; that is, there exists a real [[vector subspace]] <math>X_{\R}</math> such that we can (formally) write <math>X = X_{\R} \oplus X_{\R}i</math> as <math>\R</math>-vector spaces. === Real versus complex linear functionals === Every linear functional on <math>X</math> is complex-valued while every linear functional on <math>X_{\R}</math> is real-valued. If <math>\dim X \neq 0</math> then a linear functional on either one of <math>X</math> or <math>X_{\R}</math> is non-trivial (meaning not identically <math>0</math>) if and only if it is surjective (because if <math>\varphi(x) \neq 0</math> then for any scalar <math>s,</math> <math>\varphi\left((s/\varphi(x)) x\right) = s</math>), where the [[Image of a function|image]] of a linear functional on <math>X</math> is <math>\C</math> while the image of a linear functional on <math>X_{\R}</math> is <math>\R.</math> Consequently, the only function on <math>X</math> that is both a linear functional on <math>X</math> and a linear function on <math>X_{\R}</math> is the trivial functional; in other words, <math>X^{\#} \cap X_{\R}^{\#} = \{ 0 \},</math> where <math>\,{\cdot}^{\#}</math> denotes the space's [[algebraic dual space]]. However, every <math>\Complex</math>-linear functional on <math>X</math> is an [[Linear operator|<math>\R</math>-linear {{em|operator}}]] (meaning that it is [[Additive function|additive]] and [[Real homogeneous|homogeneous over <math>\R</math>]]), but unless it is identically <math>0,</math> it is not an <math>\R</math>-linear {{em|functional}} on <math>X</math> because its range (which is <math>\Complex</math>) is 2-dimensional over <math>\R.</math> Conversely, a non-zero <math>\R</math>-linear functional has range too small to be a <math>\Complex</math>-linear functional as well. === Real and imaginary parts === If <math>\varphi \in X^{\#}</math> then denote its [[real part]] by <math>\varphi_{\R} := \operatorname{Re} \varphi</math> and its [[imaginary part]] by <math>\varphi_i := \operatorname{Im} \varphi.</math> Then <math>\varphi_{\R} : X \to \R</math> and <math>\varphi_i : X \to \R</math> are linear functionals on <math>X_{\R}</math> and <math>\varphi = \varphi_{\R} + i \varphi_i.</math> The fact that <math>z = \operatorname{Re} z - i \operatorname{Re} (i z) = \operatorname{Im} (i z) + i \operatorname{Im} z</math> for all <math>z \in \Complex</math> implies that for all <math>x \in X,</math>{{sfn|Rudin|1991|pp=57}} <math display=block>\begin{alignat}{4}\varphi(x) &= \varphi_{\R}(x) - i \varphi_{\R}(i x) \\ &= \varphi_i(i x) + i \varphi_i(x)\\ \end{alignat}</math> and consequently, that <math>\varphi_i(x) = - \varphi_{\R}(i x)</math> and <math>\varphi_{\R}(x) = \varphi_i(ix).</math>{{sfn|Narici|Beckenstein|2011|pp=9-11}} The assignment <math>\varphi \mapsto \varphi_{\R}</math> defines a [[Bijection|bijective]]{{sfn|Narici|Beckenstein|2011|pp=9-11}} <math>\R</math>-linear operator <math>X^{\#} \to X_{\R}^{\#}</math> whose inverse is the map <math>L_{\bull} : X_{\R}^{\#} \to X^{\#}</math> defined by the assignment <math>g \mapsto L_g</math> that sends <math>g : X_{\R} \to \R</math> to the linear functional <math>L_g : X \to \Complex</math> defined by <math display=block>L_g(x) := g(x) - i g(ix) \quad \text{ for all } x \in X.</math> The real part of <math>L_g</math> is <math>g</math> and the bijection <math>L_{\bull} : X_{\R}^{\#} \to X^{\#}</math> is an <math>\R</math>-linear operator, meaning that <math>L_{g+h} = L_g + L_h</math> and <math>L_{rg} = r L_g</math> for all <math>r \in \R</math> and <math>g, h \in X_\R^{\#}.</math>{{sfn|Narici|Beckenstein|2011|pp=9-11}} Similarly for the imaginary part, the assignment <math>\varphi \mapsto \varphi_i</math> induces an <math>\R</math>-linear bijection <math>X^{\#} \to X_{\R}^{\#}</math> whose inverse is the map <math>X_{\R}^{\#} \to X^{\#}</math> defined by sending <math>I \in X_{\R}^{\#}</math> to the linear functional on <math>X</math> defined by <math>x \mapsto I(i x) + i I(x).</math> This relationship was discovered by [[Henry Löwig]] in 1934 (although it is usually credited to F. Murray),{{sfn|Narici|Beckenstein|2011|pp=10-11}} and can be generalized to arbitrary [[Finite field extension|finite extensions of a field]] in the natural way. It has many important consequences, some of which will now be described. === Properties and relationships === Suppose <math>\varphi : X \to \Complex</math> is a linear functional on <math>X</math> with real part <math>\varphi_{\R} := \operatorname{Re} \varphi</math> and imaginary part <math>\varphi_i := \operatorname{Im} \varphi.</math> Then <math>\varphi = 0</math> if and only if <math>\varphi_{\R} = 0</math> if and only if <math>\varphi_i = 0.</math> Assume that <math>X</math> is a [[topological vector space]]. Then <math>\varphi</math> is continuous if and only if its real part <math>\varphi_{\R}</math> is continuous, if and only if <math>\varphi</math>'s imaginary part <math>\varphi_i</math> is continuous. That is, either all three of <math>\varphi, \varphi_{\R},</math> and <math>\varphi_i</math> are continuous or none are continuous. This remains true if the word "continuous" is replaced with the word "[[Bounded linear functional|bounded]]". In particular, <math>\varphi \in X^{\prime}</math> if and only if <math>\varphi_{\R} \in X_{\R}^{\prime}</math> where the prime denotes the space's [[continuous dual space]].{{sfn|Rudin|1991|pp=57}} Let <math>B \subseteq X.</math> If <math>u B \subseteq B</math> for all scalars <math>u \in \Complex</math> of [[unit length]] (meaning <math>|u| = 1</math>) then<ref group=proof>It is true if <math>B = \varnothing</math> so assume otherwise. Since <math>\left|\operatorname{Re} z\right| \leq |z|</math> for all scalars <math>z \in \Complex,</math> it follows that <math display=inline>\sup_{x \in B} \left|\varphi_{\R}(x)\right| \leq \sup_{x \in B} |\varphi(x)|.</math> If <math>b \in B</math> then let <math>r_b \geq 0</math> and <math>u_b \in \Complex</math> be such that <math>\left|u_b\right| = 1</math> and <math>\varphi(b) = r_b u_b,</math> where if <math>r_b = 0</math> then take <math>u_b := 1.</math>Then <math>|\varphi(b)| = r_b</math> and because <math display=inline>\varphi\left(\frac{1}{u_b} b\right) = r_b</math> is a real number, <math display=inline>\varphi_{\R}\left(\frac{1}{u_b} b\right) = \varphi\left(\frac{1}{u_b} b\right) = r_b.</math> By assumption <math display=inline>\frac{1}{u_b} b \in B</math> so <math display=inline>|\varphi(b)| = r_b \leq \sup_{x \in B} \left|\varphi_{\R}(x)\right|.</math> Since <math>b \in B</math> was arbitrary, it follows that <math display=inline>\sup_{x \in B} |\varphi(x)| \leq \sup_{x \in B} \left|\varphi_{\R}(x)\right|.</math> <math>\blacksquare</math></ref>{{sfn|Narici|Beckenstein|2011|pp=126-128}} <math display=block>\sup_{b \in B} |\varphi(b)| = \sup_{b \in B} \left|\varphi_{\R}(b)\right|.</math> Similarly, if <math>\varphi_i := \operatorname{Im} \varphi : X \to \R</math> denotes the complex part of <math>\varphi</math> then <math>i B \subseteq B</math> implies <math display=block>\sup_{b \in B} \left|\varphi_{\R}(b)\right| = \sup_{b \in B} \left|\varphi_i(b)\right|.</math> If <math>X</math> is a [[normed space]] with norm <math>\|\cdot\|</math> and if <math>B = \{x \in X : \| x \| \leq 1\}</math> is the closed unit ball then the [[supremum]]s above are the [[operator norm]]s (defined in the usual way) of <math>\varphi, \varphi_{\R},</math> and <math>\varphi_i</math> so that{{sfn|Narici|Beckenstein|2011|pp=126-128}} <math display=block>\|\varphi\| = \left\|\varphi_{\R}\right\| = \left\|\varphi_i \right\|.</math> This conclusion extends to the analogous statement for [[Polar set|polars]] of [[balanced set]]s in general [[topological vector space]]s. * If <math>X</math> is a complex [[Hilbert space]] with a (complex) [[inner product]] <math>\langle \,\cdot\,| \,\cdot\, \rangle</math> that is [[Antilinear map|antilinear]] in its first coordinate (and linear in the second) then <math>X_{\R}</math> becomes a real Hilbert space when endowed with the real part of <math>\langle \,\cdot\,| \,\cdot\, \rangle.</math> Explicitly, this real inner product on <math>X_{\R}</math> is defined by <math>\langle x | y \rangle_{\R} := \operatorname{Re} \langle x | y \rangle</math> for all <math>x, y \in X</math> and it induces the same norm on <math>X</math> as <math>\langle \,\cdot\,| \,\cdot\, \rangle</math> because <math>\sqrt{\langle x | x \rangle_{\R}} = \sqrt{\langle x | x \rangle}</math> for all vectors <math>x.</math> Applying the [[Riesz representation theorem]] to <math>\varphi \in X^{\prime}</math> (resp. to <math>\varphi_{\R} \in X_{\R}^{\prime}</math>) guarantees the existence of a unique vector <math>f_{\varphi} \in X</math> (resp. <math>f_{\varphi_{\R}} \in X_{\R}</math>) such that <math>\varphi(x) = \left\langle f_{\varphi} | \, x \right\rangle</math> (resp. <math>\varphi_{\R}(x) = \left\langle f_{\varphi_{\R}} | \, x \right\rangle_{\R}</math>) for all vectors <math>x.</math> The theorem also guarantees that <math>\left\|f_{\varphi}\right\| = \|\varphi\|_{X^{\prime}}</math> and <math>\left\|f_{\varphi_{\R}}\right\| = \left\|\varphi_{\R}\right\|_{X_{\R}^{\prime}}.</math> It is readily verified that <math>f_{\varphi} = f_{\varphi_{\R}}.</math> Now <math>\left\|f_{\varphi}\right\| = \left\|f_{\varphi_{\R}}\right\|</math> and the previous equalities imply that <math>\|\varphi\|_{X^{\prime}} = \left\|\varphi_{\R}\right\|_{X_{\R}^{\prime}},</math> which is the same conclusion that was reached above.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)