Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Matrix norm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Cut norms== Another source of inspiration for matrix norms arises from considering a matrix as the [[adjacency matrix]] of a [[Weighted graph|weighted]], [[directed graph]].<ref name="FK">{{Cite journal|last1=Frieze| first1=Alan| last2=Kannan|first2=Ravi| date=1999-02-01|title=Quick Approximation to Matrices and Applications| url=https://doi.org/10.1007/s004930050052| journal=Combinatorica|language=en| volume=19 |issue=2 |pages=175–220 |doi=10.1007/s004930050052 |s2cid=15231198 |issn=1439-6912|url-access=subscription}}</ref> The so-called "cut norm" measures how close the associated graph is to being [[bipartite graph|bipartite]]: <math display="block">\|A\|_{\Box}=\max_{S\subseteq[n], T\subseteq[m]}{\left|\sum_{s\in S,t\in T}{A_{t,s}}\right|}</math> where {{math|''A'' ∈ ''K''<sup>''m''×''n''</sup>}}.<ref name="FK" /><ref name="LNGL">{{Cite book| last=Lovász László|title=Large Networks and Graph Limits |publisher=American Mathematical Society|year=2012| isbn=978-0-8218-9085-1 | series=AMS Colloquium Publications|volume=60| location=Providence, RI|pages=127–131 |chapter=The cut distance|author-link=László Lovász}} Note that Lovász rescales {{math|‖''A''‖<sub>□</sub>}} to lie in {{closed-closed|0, 1}}.</ref><ref name="AN">{{Cite book|last1=Alon |first1=Noga |author-link=Noga Alon| last2=Naor| first2=Assaf|title=Proceedings of the thirty-sixth annual ACM symposium on Theory of computing |chapter=Approximating the cut-norm via Grothendieck's inequality | date=2004-06-13| chapter-url=https://doi.org/10.1145/1007352.1007371 | series=STOC '04 |location=Chicago, IL, USA | publisher=Association for Computing Machinery| pages=72–80| doi=10.1145/1007352.1007371 | isbn=978-1-58113-852-8 |s2cid=1667427}}</ref> Equivalent definitions (up to a constant factor) impose the conditions {{math|2{{abs|''S''}} > ''n'' & 2{{abs|''T''}} > ''m''}}; {{math|1=''S'' = ''T''}}; or {{math|1=''S'' ∩ ''T'' = ∅}}.<ref name="LNGL" /> The cut-norm is equivalent to the induced operator norm {{math|‖·‖<sub>∞→1</sub>}}, which is itself equivalent to another norm, called the [[Grothendieck inequality|Grothendieck]] norm.<ref name="AN" /> To define the Grothendieck norm, first note that a linear operator {{Math|''K''<sup>1</sup> → ''K''<sup>1</sup>}} is just a scalar, and thus extends to a linear operator on any {{Math|''K<sup>k</sup>'' → ''K<sup>k</sup>''}}. Moreover, given any choice of basis for {{Math|''K<sup>n</sup>''}} and {{Math|''K<sup>m</sup>''}}, any linear operator {{Math|''K<sup>n</sup>'' → ''K<sup>m</sup>''}} extends to a linear operator {{Math|(''K''<sup>''k''</sup>)<sup>''n''</sup> → (''K''<sup>''k''</sup>)<sup>''m''</sup>}}, by letting each matrix element on elements of {{Math|''K<sup>k</sup>''}} via scalar multiplication. The Grothendieck norm is the norm of that extended operator; in symbols:<ref name="AN" /> <math display="block">\|A\|_{G,k}=\sup_{\text{each } u_j, v_j\in K^k; \|u_j\| = \|v_j\| = 1}{\sum_{j \in [n], \ell \in [m]}{(u_j\cdot v_j) A_{\ell,j}}}</math> The Grothendieck norm depends on choice of basis (usually taken to be the [[standard basis]]) and {{mvar|k}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)