Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Multinomial distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Equivalence tests for multinomial distributions=== The goal of equivalence testing is to establish the agreement between a theoretical multinomial distribution and observed counting frequencies. The theoretical distribution may be a fully specified multinomial distribution or a parametric family of multinomial distributions. Let <math>q</math> denote a theoretical multinomial distribution and let <math>p</math> be a true underlying distribution. The distributions <math>p</math> and <math>q</math> are considered equivalent if <math>d(p,q)<\varepsilon</math> for a distance <math>d</math> and a tolerance parameter <math>\varepsilon>0</math>. The equivalence test problem is <math>H_0=\{d(p,q)\geq\varepsilon\}</math> versus <math>H_1=\{d(p,q)<\varepsilon\}</math>. The true underlying distribution <math>p</math> is unknown. Instead, the counting frequencies <math>p_n</math> are observed, where <math>n</math> is a sample size. An equivalence test uses <math>p_n</math> to reject <math>H_0</math>. If <math>H_0</math> can be rejected then the equivalence between <math>p</math> and <math>q</math> is shown at a given significance level. The equivalence test for Euclidean distance can be found in text book of Wellek (2010).<ref>{{Cite book|title=Testing statistical hypotheses of equivalence and noninferiority|last=Wellek|first=Stefan|publisher=Chapman and Hall/CRC|year=2010|isbn=978-1439808184}}</ref> The equivalence test for the total variation distance is developed in Ostrovski (2017).<ref>{{cite journal|last1=Ostrovski|first1=Vladimir|date=May 2017|title=Testing equivalence of multinomial distributions|journal=Statistics & Probability Letters|volume=124|pages=77β82|doi=10.1016/j.spl.2017.01.004|s2cid=126293429}}[http://dx.doi.org/10.1016/j.spl.2017.01.004 Official web link (subscription required)]. [https://www.researchgate.net/publication/312481284_Testing_equivalence_of_multinomial_distributions Alternate, free web link].</ref> The exact equivalence test for the specific cumulative distance is proposed in Frey (2009).<ref>{{cite journal|last1=Frey|first1=Jesse|date=March 2009|title=An exact multinomial test for equivalence|journal=The Canadian Journal of Statistics|volume=37|pages=47β59|doi=10.1002/cjs.10000|s2cid=122486567 }}[http://www.jstor.org/stable/25653460 Official web link (subscription required)].</ref> The distance between the true underlying distribution <math>p</math> and a family of the multinomial distributions <math>\mathcal{M}</math> is defined by <math>d(p, \mathcal{M})=\min_{h\in\mathcal{M}}d(p,h) </math>. Then the equivalence test problem is given by <math>H_0=\{d(p,\mathcal{M})\geq \varepsilon\}</math> and <math>H_1=\{d(p,\mathcal{M})< \varepsilon\}</math>. The distance <math>d(p,\mathcal{M})</math> is usually computed using numerical optimization. The tests for this case are developed recently in Ostrovski (2018).<ref>{{cite journal|last1=Ostrovski|first1=Vladimir|date=March 2018|title=Testing equivalence to families of multinomial distributions with application to the independence model|journal=Statistics & Probability Letters|volume=139|pages=61β66|doi=10.1016/j.spl.2018.03.014|s2cid=126261081}}[https://doi.org/10.1016/j.spl.2018.03.014 Official web link (subscription required)]. [https://www.researchgate.net/publication/324124605_Testing_equivalence_to_families_of_multinomial_distributions_with_application_to_the_independence_model Alternate, free web link].</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)