Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Multivariate random variable
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Expectation of a quadratic form=== One can take the expectation of a [[Quadratic form (statistics)|quadratic form]] in the random vector <math>\mathbf{X}</math> as follows:<ref name=Kendrick>{{cite book |last=Kendrick |first=David |title=Stochastic Control for Economic Models |publisher=McGraw-Hill |year=1981 |isbn=0-07-033962-7 }}</ref>{{rp|p.170β171}} :<math>\operatorname{E}[\mathbf{X}^{T}A\mathbf{X}] = \operatorname{E}[\mathbf{X}]^{T}A\operatorname{E}[\mathbf{X}] + \operatorname{tr}(A K_{\mathbf{X}\mathbf{X}}),</math> where <math>K_{\mathbf{X}\mathbf{X}}</math> is the covariance matrix of <math>\mathbf{X}</math> and <math>\operatorname{tr}</math> refers to the [[Trace (linear algebra)|trace]] of a matrix β that is, to the sum of the elements on its main diagonal (from upper left to lower right). Since the quadratic form is a scalar, so is its expectation. '''Proof''': Let <math>\mathbf{z}</math> be an <math>m \times 1</math> random vector with <math>\operatorname{E}[\mathbf{z}] = \mu</math> and <math>\operatorname{Cov}[\mathbf{z}]= V</math> and let <math>A</math> be an <math>m \times m</math> non-stochastic matrix. Then based on the formula for the covariance, if we denote <math>\mathbf{z}^T = \mathbf{X}</math> and <math>\mathbf{z}^T A^T = \mathbf{Y}</math>, we see that: :<math>\operatorname{Cov}[\mathbf{X},\mathbf{Y}] = \operatorname{E}[\mathbf{X}\mathbf{Y}^T]-\operatorname{E}[\mathbf{X}]\operatorname{E}[\mathbf{Y}]^T </math> Hence :<math>\begin{align} \operatorname{E}[XY^T] &= \operatorname{Cov}[X,Y]+\operatorname{E}[X]\operatorname{E}[Y]^T \\ \operatorname{E}[z^T Az] &= \operatorname{Cov}[z^T,z^T A^T] + \operatorname{E}[z^T]\operatorname{E}[z^T A^T ]^T \\ &=\operatorname{Cov}[z^T , z^T A^T] + \mu^T (\mu^T A^T)^T \\ &=\operatorname{Cov}[z^T , z^T A^T] + \mu^T A \mu , \end{align}</math> which leaves us to show that :<math>\operatorname{Cov}[z^T , z^T A^T ]=\operatorname{tr}(AV).</math> This is true based on the fact that one can [[Trace (linear algebra)#Properties|cyclically permute matrices when taking a trace]] without changing the end result (e.g.: <math>\operatorname{tr}(AB) = \operatorname{tr}(BA)</math>). We see [[Covariance#Definition|that]] :<math>\begin{align} \operatorname{Cov}[z^T,z^T A^T] &= \operatorname{E} \left[\left(z^T - E(z^T) \right)\left(z^T A^T - E\left(z^T A^T \right) \right)^T \right] \\ &= \operatorname{E} \left[ (z^T - \mu^T) (z^T A^T - \mu^T A^T )^T \right]\\ &= \operatorname{E} \left[ (z - \mu)^T (Az - A\mu) \right]. \end{align}</math> And since :<math>\left( {z - \mu } \right)^T \left( {Az - A\mu } \right)</math> is a [[scalar (mathematics)|scalar]], then :<math>(z - \mu)^T ( Az - A\mu)= \operatorname{tr}\left( {(z - \mu )^T (Az - A\mu )} \right) = \operatorname{tr} \left((z - \mu )^T A(z - \mu ) \right)</math> trivially. Using the permutation we get: :<math>\operatorname{tr}\left( {(z - \mu )^T A(z - \mu )} \right) = \operatorname{tr}\left( {A(z - \mu )(z - \mu )^T} \right),</math> and by plugging this into the original formula we get: :<math>\begin{align} \operatorname{Cov} \left[ {z^T,z^T A^T} \right] &= E\left[ {\left( {z - \mu } \right)^T (Az - A\mu)} \right] \\ &= E \left[ \operatorname{tr}\left( A(z - \mu )(z - \mu )^T \right) \right] \\ &= \operatorname{tr} \left( {A \cdot \operatorname{E} \left((z - \mu )(z - \mu )^T \right) } \right) \\ &= \operatorname{tr} (A V). \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)