Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Number theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Algebraic number theory === {{Main|Algebraic number theory}} An ''algebraic number'' is any [[complex number]] that is a solution to some polynomial equation <math>f(x)=0</math> with rational coefficients; for example, every solution <math>x</math> of <math>x^5 + (11/2) x^3 - 7 x^2 + 9 = 0 </math> is an algebraic number. Fields of algebraic numbers are also called ''[[algebraic number field]]s'', or shortly ''[[number field]]s''. Algebraic number theory studies algebraic number fields.{{sfn|Milne|2017|p=2}} It could be argued that the simplest kind of number fields, namely [[Quadratic field|quadratic fields]], were already studied by Gauss, as the discussion of quadratic forms in ''Disquisitiones Arithmeticae'' can be restated in terms of [[ideal (ring theory)|ideals]] and [[Norm (mathematics)|norms]] in quadratic fields. (A ''quadratic field'' consists of all numbers of the form <math> a + b \sqrt{d}</math>, where <math>a</math> and <math>b</math> are rational numbers and <math>d</math> is a fixed rational number whose square root is not rational.) For that matter, the eleventh-century [[chakravala method]] amounts—in modern terms—to an algorithm for finding the units of a real quadratic number field. However, neither Bhāskara nor Gauss knew of number fields as such. The grounds of the subject were set in the late nineteenth century, when ''ideal numbers'', the ''theory of ideals'' and ''valuation theory'' were introduced; these are three complementary ways of dealing with the lack of unique factorization in algebraic number fields. (For example, in the field generated by the rationals and <math> \sqrt{-5}</math>, the number <math>6</math> can be factorised both as <math> 6 = 2 \cdot 3</math> and <math> 6 = (1 + \sqrt{-5}) ( 1 - \sqrt{-5})</math>; all of <math>2</math>, <math>3</math>, <math>1 + \sqrt{-5}</math> and <math> 1 - \sqrt{-5}</math> are irreducible, and thus, in a naïve sense, analogous to primes among the integers.) The initial impetus for the development of ideal numbers (by [[Ernst Kummer|Kummer]]) seems to have come from the study of higher reciprocity laws,{{sfn|Edwards|2000|p=79}} that is, generalizations of [[quadratic reciprocity]]. Number fields are often studied as extensions of smaller number fields: a field ''L'' is said to be an ''extension'' of a field ''K'' if ''L'' contains ''K''. (For example, the complex numbers ''C'' are an extension of the reals ''R'', and the reals ''R'' are an extension of the rationals ''Q''.) Classifying the possible extensions of a given number field is a difficult and partially open problem. Abelian extensions—that is, extensions ''L'' of ''K'' such that the [[Galois group]]<ref group="note">The Galois group of an extension ''L/K'' consists of the operations ([[isomorphisms]]) that send elements of L to other elements of L while leaving all elements of K fixed. Thus, for instance, ''Gal(C/R)'' consists of two elements: the identity element (taking every element ''x'' + ''iy'' of ''C'' to itself) and complex conjugation (the map taking each element ''x'' + ''iy'' to ''x'' − ''iy''). The Galois group of an extension tells us many of its crucial properties. The study of Galois groups started with [[Évariste Galois]]; in modern language, the main outcome of his work is that an equation ''f''(''x'') = 0 can be solved by radicals (that is, ''x'' can be expressed in terms of the four basic operations together with square roots, cubic roots, etc.) if and only if the extension of the rationals by the roots of the equation ''f''(''x'') = 0 has a Galois group that is [[solvable group|solvable]] in the sense of group theory. ("Solvable", in the sense of group theory, is a simple property that can be checked easily for finite groups.)</ref> Gal(''L''/''K'') of ''L'' over ''K'' is an [[abelian group]]—are relatively well understood. Their classification was the object of the programme of [[class field theory]], which was initiated in the late nineteenth century (partly by [[Leopold Kronecker|Kronecker]] and [[Gotthold Eisenstein|Eisenstein]]) and carried out largely in 1900–1950. An example of an active area of research in algebraic number theory is [[Iwasawa theory]]. The [[Langlands program]], one of the main current large-scale research plans in mathematics, is sometimes described as an attempt to generalise class field theory to non-abelian extensions of number fields.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)