Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Partial fraction decomposition
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Example 5 (limit method)=== [[Limit (mathematics)|Limits]] can be used to find a partial fraction decomposition.<ref>{{cite book|last=Bluman|first=George W.| title=Problem Book for First Year Calculus|year=1984|publisher=Springer-Verlag|location=New York|pages=250β251}}</ref> Consider the following example: <math display="block"> \frac{1}{x^3 - 1}</math> First, factor the denominator which determines the decomposition: <math display="block"> \frac{1}{x^3 - 1} = \frac{1}{(x - 1)(x^2 + x + 1)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + x + 1}.</math> Multiplying everything by <math>x-1</math>, and taking the limit when <math>x \to 1</math>, we get <math display="block">\lim_{x \to 1} \left((x-1)\left ( \frac{A}{x-1} + \frac{Bx + C}{x^2 + x + 1} \right )\right) = \lim_{x \to 1} A + \lim_{x \to 1}\frac{(x-1)(Bx + C)}{x^2 + x + 1} =A.</math> On the other hand, <math display="block">\lim_{x \to 1} \frac{(x-1)}{(x - 1)(x^2 + x + 1)} = \lim_{x \to 1}\frac{1}{x^2 + x + 1} = \frac13,</math> and thus: <math display="block">A = \frac{1}{3}.</math> Multiplying by {{math|''x''}} and taking the limit when <math>x \to \infty</math>, we have <math display="block">\lim_{x \to \infty} x\left( \frac{A}{x-1} + \frac{Bx + C}{x^2 + x + 1} \right )= \lim_{x \to \infty} \frac{Ax}{x-1} + \lim_{x \to \infty} \frac{Bx^2+Cx}{x^2+x+1}= A+B,</math> and <math display="block">\lim_{x \to \infty} \frac{x}{(x - 1)(x^2 + x + 1)} =0.</math> This implies {{math|1=''A'' + ''B'' = 0}} and so <math>B = -\frac{1}{3}</math>. For {{math|1=''x'' = 0}}, we get <math>-1 = -A + C,</math> and thus <math>C = -\tfrac{2}{3}</math>. Putting everything together, we get the decomposition <math display="block">\frac{1}{x^3 -1} = \frac{1}{3} \left( \frac{1}{x - 1} + \frac{-x -2}{x^2 + x + 1} \right ).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)